Co-amorphous mixtures have been demonstrated to represent a promising approach for enhancing the dissolution of poorly water-soluble drugs. However, little is known of their permeability properties, especially through biological membranes, or about the relationship between their dissolution and permeability. In the present study, co-amorphous glibenclamide (GBC) mixtures with two amino acids, arginine (ARG) and serine (SER), in molar ratios of 1:1 were prepared by cryomilling. Their dissolution and permeability properties were studied in side-by-side diffusion chambers using cell layers containing Madine Darby kidney cells overexpressing P-glycoprotein (Pgp) transporters (MDCKII-MDR1), as Pgp may influence the absorption of GBC. Furthermore, two other compounds, the flavonoid quercetin (QRT) which is a Pgp inhibitor and the surfactant, sodium lauryl sulfate (SLS), were used as excipients to investigate if they improved either passive or active diffusion of GBC. In addition, amorphous QRT and a co-amorphous mixture of GBC and QRT (1:1) were characterized with respect to their solid-state properties and physical stability. It was demonstrated that co-amorphous GBC mixtures exhibited superior dissolution properties over the corresponding physical mixtures and amorphous GBC. Furthermore, the co-amorphous GBC-ARG-SLS mixture exhibited a 9-fold increase in permeating through the MDCKII-MDR1 cell layer as compared to the corresponding physical mixture. There was a correlation between the dissolution and permeability area under curve (AUC) values, evidence that the main mechanism behind the improved permeability of co-amorphous mixtures was their improved dissolution. The simultaneous dissolution/permeation testing with side-by-side diffusion chambers and MDCKII-MDR1 cells proved to be a feasible method for evaluating the dissolution/permeation interplay of amorphous compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.