SummaryHost cell invasion in the Apicomplexa is unique in its dependency on a parasite actin-driven machinery and in the exclusion of most host cell membrane proteins during parasitophorous vacuole (PV) formation. This exclusion occurs at a junction between host cell and parasite plasma membranes that has been called the moving junction, a circumferential zone which forms at the apical tip of the parasite, moves backward and eventually pinches the PV from the host cell membrane. Despite having been described by electron microscopic studies 30 years ago, the molecular nature of this singular structure is still enigmatic. We have obtained a monoclonal antibody that recognizes the moving junction of invading tachyzoites of Toxoplasma gondii , in a pattern clearly distinct from those described so far for microneme and rhoptry proteins. The protein recognized by this antibody has been affinity purified. Mass spectrometry analysis showed that it is a rhoptry neck protein (RON4), a hypothetical protein with homologues restricted to Apicomplexa. Our findings reveals for the first time the participation of rhoptry neck proteins in moving junction formation and strongly suggest the conservation of this structure at the molecular level among Apicomplexa.
Toxoplasma gondii is an obligate intracellular parasite for which the discharge of apical organelles named rhoptries is a key event in host cell invasion. Among rhoptry proteins, ROP2, which is the prototype of a large protein family, is translocated in the parasitophorous vacuole membrane during invasion. The ROP2 family members are related to protein-kinases, but only some of them are predicted to be catalytically active, and none of the latter has been characterized so far. We show here that ROP18, a member of the ROP2 family, is located in the rhoptries and re-localises at the parasitophorous vacuole membrane during invasion. We demonstrate that a recombinant ROP18 catalytic domain (amino acids 243–539) possesses a protein-kinase activity and phosphorylate parasitic substrates, especially a 70-kDa protein of tachyzoites. Furthermore, we show that overexpression of ROP18 in transgenic parasites causes a dramatic increase in intra-vacuolar parasite multiplication rate, which is correlated with kinase activity. Therefore, we demonstrate, to our knowledge for the first time, that rhoptries can discharge active protein-kinases upon host cell invasion, which can exert a long-lasting effect on intracellular parasite development and virulence.
Four rhoptry proteins (ROP) of Toxoplasma gondii previously identified with mAb have been affinity purified and analyzed by MS; the data obtained allowed the genomic sequences to be assigned to these proteins. As previously suggested for some of them by antibody crossreactivity, these proteins were shown to belong to a family, the prototype of which being ROP2. We describe here the proteins ROP2, 4, 5, and 7. These four proteins correspond to the most abundant products of a gene family that comprises several members which we have identified in genomic and EST libraries. Eight additional sequences were found and we have cloned four of them. All members of the ROP2 family contain a protein-kinase-like domain, but only some of them possess a bona fide kinase catalytic site. Molecular modeling of the kinase domain demonstrates the conservation of residues critical for the stabilization of the protein-kinase fold, especially within a hydrophobic segment described so far as transmembrane and which appears as an helix buried inside the protein. The concomitant synthesis of these ROPs by T. gondii tachyzoites suggests a specific role for each of these proteins, especially in the early interaction with the host cell upon invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.