The impact of the ongoing rapid climate change on natural systems is a major issue for human societies. An important challenge for ecologists is to identify the climatic factors that drive temporal variation in demographic parameters, and, ultimately, the dynamics of natural populations. The analysis of long-term monitoring data at the individual scale is often the only available approach to estimate reliably demographic parameters of vertebrate populations. We review statistical procedures used in these analyses to study links between climatic factors and survival variation in vertebrate populations. We evaluated the efficiency of various statistical procedures from an analysis of survival in a population of white stork, Ciconia ciconia, a simulation study and a critical review of 78 papers published in the ecological literature. We identified six potential methodological problems: (i) the use of statistical models that are not well-suited to the analysis of long-term monitoring data collected at the individual scale; (ii) low ratios of number of statistical units to number of candidate climatic covariates; (iii) collinearity among candidate climatic covariates; (iv) the use of statistics, to assess statistical support for climatic covariates effects, that deal poorly with unexplained variation in survival; (v) spurious detection of effects due to the co-occurrence of trends in survival and the climatic covariate time series; and (vi) assessment of the magnitude of climatic effects on survival using measures that cannot be compared across case studies. The critical review of the ecological literature revealed that five of these six methodological problems were often poorly tackled. As a consequence we concluded that many of these studies generated hypotheses but only few provided solid evidence for impacts of climatic factors on survival or reliable measures of the magnitude of such impacts. We provide practical advice to solve efficiently most of the methodological problems identified. The only frequent issue that still lacks a straightforward solution was the low ratio of the number of statistical units to the number of candidate climatic covariates. In the perspective of increasing this ratio and therefore of producing more robust analyses of the links between climate and demography, we suggest leads to improve the procedures for designing field protocols and selecting a set of candidate climatic covariates. Finally, we present recent statistical methods with potential interest for assessing the impact of climatic factors on demographic parameters.
The in£uence of wind patterns on behaviour and e¡ort of free-ranging male wandering albatrosses (Diomedea exulans) was studied with miniaturized external heart-rate recorders in conjunction with satellite transmitters and activity recorders. Heart rate was used as an instantaneous index of energy expenditure. When cruising with favourable tail or side winds, wandering albatrosses can achieve high £ight speeds while expending little more energy than birds resting on land. In contrast, heart rate increases concomitantly with increasing head winds, and £ight speeds decrease. Our results show that e¡ort is greatest when albatrosses take o¡ from or land on the water. On a larger scale, we show that in order for birds to have the highest probability of experiencing favourable winds, wandering albatrosses use predictable weather systems to engage in a stereotypical £ight pattern of large looping tracks. When heading north, albatrosses £y in anticlockwise loops, and to the south, movements are in a clockwise direction. Thus, the capacity to integrate instantaneous eco-physiological measures with records of largescale £ight and wind patterns allows us to understand better the complex interplay between the evolution of morphological, physiological and behavioural adaptations of albatrosses in the windiest place on earth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.