Endogenously generated protoporphyrin IX (PpIX) from exogenous ALA can be an effective photosensitizer. PpIX accumulation is inversely dependent on available intracellular iron, which is required for the conversion of PpIX to heme. Iron also is necessary for cell replication. Since iron can be toxic, intracellular iron levels are tightly controlled. Activated and proliferating cells respond to the demand for intracellular iron by upregulating membrane expression of the transferrin receptor (CD71) which is needed for iron uptake. We predicted that activated lymphocytes (CD71+) would preferentially accumulate PpIX because of their lower intracellular iron levels and because of competition for iron between ALA-induced heme production and cellular growth processes. Thus, the CD71+ cells could serve as PDT targets. Stimulation of human peripheral blood lymphocytes (PBL) with the mitogens, phytohemagglutinin A, concanavalin A and pokeweed prior to incubation with ALA results in PpIX accumulation correlating with level of activation. Activated lymphocytes expressing high levels of surface CD71 transferrin receptors generated more PpIX than those with low CD71 expression. Incubating activated cells in transferrin depleted medium (thereby decreasing the iron availability) further increased PpIX levels. Malignant, CD71+ T lymphocytes from a patient with cutaneous T-cell lymphoma (CTCL)/Sezary syndrome also accumulated increased PpIX levels in comparison to normal lymphocytes. PDT of activated lymphocytes and Sezary cells after ALA incubation demonstrated preferential killing compared to normal, unstimulated PBL. These findings suggest a possible mechanism for the selectivity of ALA PDT for activated CD71+ cells. They also indicate a clinical use for ALA-PDT in therapy directed towards the malignant lymphocytes in leukemias and lymphomas, and as animmunomodulatory agent.
The effects of topical and systemic administration of 5-aminolevulinic acid (ALA) were examined in several murine tumor systems with regard to porphyrin accumulation kinetics in tumor, skin and blood, vascular and tumor cell photosensitization and tumor response after light exposure. Marked, transient increases in porphyrin levels were observed in tumor and skin after systemic and topical ALA. Rapid, transient, dose-dependent porphyrin increases were also observed in blood; these were pronounced after systemic ALA injection and mild after topical application. They were highest within 1 h after ALA injection, thereafter declining rapidly. This matched the clearing kinetics of injected exogenous protoporphyrin IX (PpIX). Initially, vascular photosensitivity changed inversely to blood porphyrin levels, increasing gradually up to 5 h post-ALA, as porphyrin was clearing from the bloodstream. This pattern was again matched by injected, exogenous PpIX. After therapeutic tumor treatment vascular disruption of the tumor bed, while observed, was incomplete, especially at the tumor base. Minimal direct tumor cell kill was found at low photodynamic therapy (PDT) doses (250 mg/kg ALA, 135 J/cm2 light). Significant, but limited (< 1 log) direct photodynamic tumor cell kill was obtained when the PDT dose was raised to 500 mg/kg systemic ALA, followed 3 h later by 270 J/cm2, a dose that was however toxic to the animals. The further reduction of clonogenic tumor cells over 24 h following treatment was moderate and probably limited by the incomplete disruption of the vasculature. Tumor responses were highest when light treatment was carried out at the time of highest tumor porphyrin content rather than at the time of highest vascular photosensitivity. Tumor destruction did not reach the tumor base, regardless of treatment conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.