Rationale: Activation of prosurvival kinases and subsequent nitric oxide (NO) production by certain G protein-coupled receptors (GPCRs) protects myocardium in ischemia/reperfusion injury (I/R) models. GPCR signaling pathways are regulated by GPCR kinases (GRKs), and GRK2 has been shown to be a critical molecule in normal and pathological cardiac function.Objective: A loss of cardiac GRK2 activity is known to arrest progression of heart failure (HF), at least in part by normalization of cardiac -adrenergic receptor (AR) signaling. Chronic HF studies have been performed with GRK2 knockout mice, as well as expression of the ARKct, a peptide inhibitor of GRK2 activity. This study was conducted to examine the role of GRK2 and its activity during acute myocardial ischemic injury using an I/R model. Methods and Results:We demonstrate, using cardiac-specific GRK2 and ARKct-expressing transgenic mice, a deleterious effect of GRK2 on in vivo myocardial I/R injury with ARKct imparting cardioprotection. Post-I/R infarct size was greater in GRK2-overexpressing mice (45.0؎2.8% versus 31.3؎2.3% in controls) and significantly smaller in ARKct mice (16.8؎1.3%, P<0.05). Importantly, in vivo apoptosis was found to be consistent with these reciprocal effects on post-I/R myocardial injury when levels of GRK2 activity were altered. Moreover, these results were reflected by higher Akt activation and induction of NO production via ARKct, and these antiapoptotic/survival effects could be recapitulated in vitro. Interestingly, selective antagonism of  2 ARs abolished ARKct-mediated cardioprotection, suggesting that enhanced GRK2 activity on this GPCR is deleterious to cardiac myocyte survival. Conclusion:The novel effect of reducing acute ischemic myocardial injury via increased Akt activity and NO production adds significantly to the therapeutic potential of GRK2 inhibition with the ARKct not only in chronic HF but also potentially in acute ischemic injury conditions. (Circ Res. 2010;107:1140-1149.) Key Words: acute myocardial ischemia Ⅲ ischemia/reperfusion injury Ⅲ cardioprotection Ⅲ G protein-coupled receptor kinase-2 Ⅲ ARKct Ⅲ myocyte apoptosis
Among patients with severe AS with increased surgical risk, SAVR and TAVI improve survival and symptoms compared with MT. Clinical outcomes of TAVI and SAVR seem similar among carefully selected patients with severe symptomatic AS at increased risk.
Hypertension represents a complex, multifactorial disease and contributes to the major causes of morbidity and mortality in industrialized countries: ischemic and hypertensive heart disease, stroke, peripheral atherosclerosis and renal failure. Current pharmacological therapy of essential hypertension focuses on the regulation of vascular resistance by inhibition of hormones such as catecholamines and angiotensin II, blocking them from receptor activation. Interaction of G-protein coupled receptor kinases (GRKs) and Regulator of G-Protein Signaling (RGS) proteins with activated G-protein coupled receptors (GPCRs) effect the phosphorylation state of the receptor leading to desensitization and can profoundly impair signalling. Defects in GPCR regulation via these modulators have severe consequences affecting GPCR-stimulated biological responses in pathological situations such as hypertension, since they fine-tune and balance the major transmitters of vessel constriction versus dilatation, thus representing valuable new targets for anti-hypertensive therapeutic strategies. Elevated levels of GRKs are associated with human hypertensive disease and are relevant modulators of blood pressure in animal models of hypertension. This implies therapeutic perspective in a disease that has a prevalence of 65 million in the United States while being directly correlated with occurrence of major adverse cardiac and vascular events. Therefore, therapeutic approaches using the inhibition of GRKs to regulate GPCRs are intriguing novel targets for treatment of hypertension and heart failure.
Objectives This study investigated the hypothesis whether S100A1 gene therapy can improve pathological key features in human failing ventricular cardiomyocytes (HFCMs). Background Depletion of the Ca2+-sensor protein S100A1 drives deterioration of cardiac performance toward heart failure (HF) in experimental animal models. Targeted repair of this molecular defect by cardiac-specific S100A1 gene therapy rescued cardiac performance, raising the immanent question of its effects in human failing myocardium. Methods Enzymatically isolated HFCMs from hearts with severe systolic HF were subjected to S100A1 and control adenoviral gene transfer and contractile performance, calcium handling, signaling, and energy homeostasis were analyzed by video-edge-detection, FURA2-based epifluorescent microscopy, phosphorylation site-specific antibodies, and mitochondrial assays, respectively. Results Genetically targeted therapy employing the human S100A1 cDNA normalized decreased S100A1 protein levels in HFCMs, reversed both contractile dysfunction and negative force-frequency relationship, and improved contractile reserve under beta-adrenergic receptor (β-AR) stimulation independent of cAMP-dependent (PKA) and calmodulin-dependent (CaMKII) kinase activity. S100A1 reversed underlying Ca2+ handling abnormalities basally and under β-AR stimulation shown by improved SR Ca2+ handling, intracellular Ca2+ transients, diastolic Ca2+ overload, and diminished susceptibility to arrhythmogenic SR Ca2+ leak, respectively. Moreover, S100A1 ameliorated compromised mitochondrial function and restored the phosphocreatine/adenosine-triphosphate ratio. Conclusions Our results demonstrate for the first time the therapeutic efficacy of genetically reconstituted S100A1 protein levels in HFCMs by reversing pathophysiological features that characterize human failing myocardium. Our findings close a gap in our understanding of S100A1’s effects in human cardiomyocytes and strengthen the rationale for future molecular-guided therapy of human HF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.