KSCN and phenylalanine are encapsulated with nanoscale hollow spheres acting as containers. These hollow spheres, composed of Au, CuS, AlO(OH), or SnO2, and can be prepared using a microemulsion technique, and yield particles with outer diameters of 15–30 nm and wall thicknesses of 2–10 nm.
A wide variety of nanoscale hollow spheres can be obtained via a microemulsion approach. This includes oxides (e.g., ZnO, TiO2, SnO2, AlO(OH), La(OH)3), sulfides (e.g., Cu2S, CuS) as well as elemental metals (e.g., Ag, Au). All hollow spheres are realized with outer diameters of 10−60 nm, an inner cavity size of 2−30 nm and a wall thickness of 2−15 nm. The microemulsion approach allows modification of the composition of the hollow spheres, fine-tuning their diameter and encapsulation of various ingredients inside the resulting “nanocontainers”. This review summarizes the experimental conditions of synthesis and compares them to other methods of preparing hollow spheres. Moreover, the structural characterization and selected properties of the as-prepared hollow spheres are discussed. The latter is especially focused on container-functionalities with the encapsulation of inorganic salts (e.g., KSCN, K2S2O8, KF), biomolecules/bioactive molecules (e.g., phenylalanine, quercetin, nicotinic acid) and fluorescent dyes (e.g., rhodamine, riboflavin) as representative examples.
GaN nanoparticles, 3-4 nm in size, are synthesized in a microemulsion using liquid ammonia as the polar droplet phase. Surprisingly, GaN is readily crystalline although prepared at -40 °C. The nanoparticles show a band gap of 4.4 eV as well as light emission with its maximum at 336 nm. Both confirm the expected quantum-confinement effect.
Angular momentum distributions for the dominant decay channels of 156 Er compound nuclei have been studied with the Darmstadt-Heidelberg "crystal ball" detector in nearly mass-symmetric ( 64 Ni-f 92 Zr) and asymmetric ( 12 C + 144 Sm) entrance channels. Strong differences in the an yield and 2n/3n cross-section ratios are observed at the same excitation energy (47 MeV) and spin in 156 Er. This effect indicates that there is memory of the entrance channel during the particleevaporation stage of the compound-nucleus decay. The dominant exit channels do not exhibit high-angular-momentum components.
The CO(2) uptake on nanoscale AlO(OH) hollow spheres (260 mg g(-1)) as a new material is comparable to that on many metal-organic frameworks although their specific surface area is much lower (530 m(2) g(¬1)versus 1500-6000 m(2) g(¬1)). Suited temperature-pressure cycles allow for reversible storage and separation of CO(2) while the CO(2) uptake is 4.3-times higher as compared to N(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.