CUGBP1 and MBNL1 are developmentally regulated RNA-binding proteins that are causally associated with myotonic dystrophy type 1. We globally determined the in vivo RNA-binding sites of CUGBP1 and MBNL1. Interestingly, CUGBP1 and MBNL1 are both preferentially bound to 3′ UTRs. Analysis of CUGBP1- and MBNL1-bound 3′ UTRs demonstrated that both factors mediate accelerated mRNA decay and temporal profiles of expression arrays supported this. Role of CUGBP1 on accelerated mRNA decay has been previously reported, but the similar function of MBNL1 has not been reported to date. It is well established that CUGBP1 and MBNL1 regulate alternative splicing. Screening by exon array and validation by RT-PCR revealed position dependence of CUGBP1- and MBNL1-binding sites on the resulting alternative splicing pattern. This study suggests that regulation of CUGBP1 and MBNL1 is essential for accurate control of destabilization of a broad spectrum of mRNAs as well as of alternative splicing events.
Iron metabolism during pregnancy is biased toward maintaining the fetal supply, even at the cost of anemia in the mother. The mechanisms regulating this are not well understood. Here, we examine iron deficiency and supplementation on the hierarchy of iron supply and the gene expression of proteins that regulate iron metabolism in the rat. Dams were fed iron-deficient diets for 4 wk, mated, and either continued on the deficient diet or an iron-supplemented diet during either the first half or the second half of their pregnancy. A control group was maintained on normal iron throughout. They were killed at 0.5, 12.5, or 21.5 days of gestation, and tissues and blood samples were collected. Deficiency and supplementation had differential effects on maternal and fetal hematocrit and liver iron levels. From early in pregnancy, a hierarchy of iron supply is established benefiting the fetus to the detriment of the mother. Transferrin receptor, transferrin receptor 2, and hepcidin mRNA expression were regulated by both iron deficiency and supplementation. Expression patterns showed both organ and supplementation protocol dependence. Further analysis indicated that iron levels in the fetal, and not maternal, liver regulate the expression of liver transferrin receptor and hepcidin expression in the mother.
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity is correlated with decreased snRNP assembly activity. In particular, the minor spliceosomal snRNPs are affected, and some U12-dependent introns have been reported to be aberrantly spliced in patient cells and animal models. SMA is characterized by loss of motor neurons, but the underlying mechanism is largely unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show elevated U12-intron retention in all examined tissues from SMA mice, and that U12-dependent intron retention is induced upon siRNA knock-down of SMN in HeLa cells. Furthermore, we show that retention of U12-dependent introns is mitigated by ASO treatment of SMA mice and that many transcriptional changes are reversed. Finally, we report on missplicing of several Ca2+ channel genes that may explain disrupted Ca2+ homeostasis in SMA and activation of Cdk5.
We previously detected a membrane-bound, copper-containing oxidase that may be involved in iron efflux in BeWo cells, a human placental cell line. We have now identified a gene encoding a predicted multicopper ferroxidase (MCF) with a putative C-terminal membrane-spanning sequence and high sequence identity to hephaestin (Heph) and ceruloplasmin (Cp), the other known vertebrate MCF. Molecular modeling revealed conservation of all type I, II, and III copper-binding sites as well as a putative iron-binding site. Protein expression was observed in multiple diverse mouse tissues, including placenta and mammary gland, and the expression pattern was distinct from that of Cp and Heph. The protein possessed ferroxidase activity, and protein levels decreased in cellular copper deficiency. Knockdown with small interfering RNA in BeWo cells indicates that this gene represents the previously detected oxidase. We propose calling this new member of the MCF family "zyklopen."
Iron and copper are both essential micronutrients and are required for a wide variety of enzymatic and other processes within the developing foetus. Transfer of both nutrients across the placenta is tightly regulated. In this review, we consider their mechanisms of transport, how the transfer is modulated in response to nutritional requirements and how the two metals interact. Iron uptake is via the transferrin receptor, followed by endocytosis, acidification of the vesicle, and release of the iron into the cytosol, and transfer across the basolateral membrane. Many of the genes involved have been identified, and, to varying extents, their mechanisms of regulation clarified, but there are still unanswered questions and conundrums. For example, although the ion channel DMT1 (now formally known as slc11a2) is essential for iron uptake in the gut, knockout mice, which have no slc11a2 protein, have apparently normal transfer across the placenta. There must, therefore, be an alternative mechanism, which remains unclear, although nonspecific calcium channels have been proposed as one possibility. For copper, uptake is a carrier‐mediated process, and intracellular transfer is mediated by proteins known as chaperones. Efflux is through ATPases, but their localisation and how they are regulated is only now being elucidated. Regulation of copper proteins appears to be different from that of iron, with localisation of the protein, rather than changing levels, being responsible for altering rates of transfer. This may not be true for all the proteins and genes involved in the delivery of copper, and, again, there is much that remains to be clarified. Finally, we consider the interactions that occur between the two metals, reviewing the data that show how alterations in levels of one of the nutrients changes that of the other, and we examine the hypotheses explaining the interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.