The large vascular meristem of poplar trees with its highly organized secondary xylem enables the boundaries between different developmental zones to be easily distinguished. This property of wood-forming tissues allowed us to determine a unique tissuespecific transcript profile for a well defined developmental gradient. RNA was prepared from different developmental stages of xylogenesis for DNA microarray analysis by using a hybrid aspen unigene set consisting of 2,995 expressed sequence tags. The analysis revealed that the genes encoding lignin and cellulose biosynthetic enzymes, as well as a number of transcription factors and other potential regulators of xylogenesis, are under strict developmental stage-specific transcriptional regulation.T ranscript profiling has the potential to reveal transcriptional hierarchy during development for thousands of genes, as well as providing expression data for many genes of unknown function (1, 2). This is especially true when expression patterns can be obtained for well defined tissues at specific developmental stages. However, this is technically demanding and so far there are no reports demonstrating tissue-specific analysis on cell types from a single developmental sequence. We have studied the developing secondary xylem of poplar, which is highly organized with easily recognized and distinct boundaries between the different developmental stages. Wood formation is initiated in the vascular cambium. Cambial derivatives develop into xylem cells through the processes of division, expansion, secondary wall formation, lignification, and finally, programmed cell death. The large physical size of the vascular meristem in trees offers a unique possibility to obtain samples from defined developmental stages by tangential cryo sectioning (3). To determine the steady-state mRNA levels at specific stages during the ontogeny of wood formation in Populus tremula ϫ Populus tremuloides (hybrid aspen) we sampled 30-m-thick sections through the wood development region and subsequently analyzed the samples by using a spotted cDNA-microarray (4) consisting of 2,995 unique ESTs from hybrid aspen. Our study provides a unique global examination of gene expression patterns that encompasses a developmental gradient within a multicellular organism. Materials and MethodsThe Unigene set was selected from the expressed sequence tags (ESTs) presented in ref. 5, using cluster analysis. ESTs were transformed into Escherichia coli by using TSS competent cells (6), plasmids were prepared by using 96-well Multiscreen FB plates (Millipore), inserts were PCR amplified by using vectorspecific primers, and PCR products were purified on Multiscreen PCR filter plates (Millipore) and spotted in duplicate onto CMT GAPS slides (Corning) by using the GMS 417 Arrayer (Affymetrix, Santa Clara, CA) as described (7). All PCR products were checked on ethidium bromide-stained agarose gels. Nine clones giving double PCR bands were excluded from the analysis.A subset of 2,085 of the 2,995 PCR products in the Unigene set...
BackgroundThe large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5.ResultsAbout 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions.ConclusionOverall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database at http://www.cazy.org/GH5.html.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.