TMEM16A is essential for Ca -activated Cl conductance in vascular smooth muscle. The importance of TMEM16A for agonist-induced vascular constriction and blood pressure control is, however, under debate. Previous studies suggested that TMEM16A might have a complex cellular function beyond being essential for the Ca -activated Cl conductance, for example modulation of Ca channel expression. Mice with constitutive, smooth muscle-specific expression of siRNA directed against Tmem16a (transgenic mice, TG) were generated. Isometric constrictions of isolated aorta, mesenteric, femoral and tail arteries from TG mice were compared with wild-types. Protein expression was analysed by Western blots. Blood pressure and heart rate were studied telemetrically. Significant TMEM16A down-regulation was seen in aorta and tail arteries, while no changes were detected in mesenteric and femoral arteries. Contractile responses of mesenteric and femoral arteries from TG and wild-type mice were not different. Aorta from TG mice showed reduced agonist-induced constriction, while their responses to elevated K were unchanged. Tail arteries from TG mice also constricted less to adrenergic stimulation than wild-types. Surprisingly, tail arteries from TG mice constricted less to elevated K too and were more sensitive to nifedipine-induced relaxation. Consistently, TMEM16A down-regulation in tail arteries was associated with reduction in CACNA1C protein (i.e. vascular L-type Ca channel) expression. No differences in blood pressure and heart rate between the groups were seen. This study suggests a complex contribution of TMEM16A in vascular function. We suggest that TMEM16A modulates arterial contractility, at least in part, indirectly via regulation of CACNA1C expression.
A Ca2+‐activated Cl− channel protein, ANO1, is expressed in vascular smooth muscle cells where Cl− current is thought to potentiate contraction by contributing to membrane depolarization. However, there is an inconsistency between previous knockout and knockdown studies on ANO1’s role in small arteries. In this study, we assessed cardiovascular function of heterozygous mice with global deletion of exon 7 in the ANO1 gene. We found decreased expression of ANO1 in aorta, saphenous and tail arteries from heterozygous ANO1 knockout mice in comparison with wild type. Accordingly, ANO1 knockdown reduced the Ca2+‐activated Cl− current in smooth muscle cells. Consistent with conventional hypothesis, the contractility of aorta from ANO1 heterozygous mice was reduced. Surprisingly, we found an enhanced contractility of tail and saphenous arteries from ANO1 heterozygous mice when stimulated with noradrenaline, vasopressin, and K+‐induced depolarization. This difference was endothelium‐independent. The increased contractility of ANO1 downregulated small arteries was due to increased Ca2+ influx. The expression of L‐type Ca2+ channels was not affected but expression of the plasma membrane Ca2+ ATPase 1 and the Piezo1 channel was increased. Expressional analysis of tail arteries further suggested changes of ANO1 knockdown smooth muscle cells toward a pro‐contractile phenotype. We did not find any difference between genotypes in blood pressure, heart rate, pressor response, and vasorelaxation in vivo. Our findings in tail and saphenous arteries contrast with the conventional hypothesis and suggest additional roles for ANO1 as a multifunctional protein in the vascular wall that regulates Ca2+ homeostasis and smooth muscle cell phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.