Background Dual-energy CT (DECT) can acknowledge differences in tissue compositions and can colour-code tissues with specific features including monosodium urate (MSU) crystals. However, when evaluating gout patients, DECT frequently colour-codes material not truly representing MSU crystals and this might lead to misinterpretations. The characteristics of and variations in properties of colour-coded DECT lesions in gout patients have not yet been systematically investigated. The objective of this study was to evaluate the properties and locations of colour-coded DECT lesions in gout patients. Methods DECT of the hands, knees and feet were performed in patients with suspected gout using factory default gout settings, and colour-coded DECT lesions were registered. For each lesion, properties [mean density (mean of Hounsfield Units (HU) at 80 kV and Sn150kV), mean DECT ratio and size] and location were determined. Subgroup analysis was performed post hoc evaluating differences in locations of lesions when divided into definite MSU depositions and possibly other lesions. Results In total, 4033 lesions were registered in 27 patients (23 gout patients, 3918 lesions; 4 non-gout patients, 115 lesions). In gout patients, lesions had a median density of 160.6 HU and median size of 6 voxels, and DECT ratios showed an approximated normal distribution (mean 1.06, SD 0.10), but with a right heavy tail consistent with the presence of smaller amounts of high effective atomic number lesions (e.g. calcium-containing lesions). The most common locations of lesions were 1st metatarsophalangeal (MTP1), knee and midtarsal joints along with quadriceps and patella tendons. Subgroup analyses showed that definite MSU depositions (large volume, low DECT ratio, high density) had a similar distribution pattern, whereas possible calcium-containing material (high DECT ratio) and non-gout MSU-imitating lesions (properties as definite MSU depositions in non-gout patients) were primarily found in some larger joints (knee, midtarsal and talocrural) and tendons (Achilles and quadriceps). MTP1 joints and patella tendons showed only definite MSU depositions. Conclusion Colour-coded DECT lesions in gout patients showed heterogeneity in properties and distribution. MTP1 joints and patella tendons exclusively showed definite MSU depositions. Hence, a sole focus on these regions in the evaluation of gout patients may improve the specificity of DECT scans.
BackgroundWe investigated the influence of dose, spectral separation, pitch, rotation time, and reconstruction kernel on accuracy and image noise of virtual non-calcium images using a bone marrow phantom.MethodsThe phantom was developed at our institution and scanned using a third-generation dual-source dual-energy CT scanner at five different spectral separations by varying the tube-voltage combinations (70 kV/Sn150 kV, 80 kV/Sn150 kV, 90 kV/Sn150 kV, and 100 kV/Sn150 kV, all with 0.6-mm tin filter [Sn]; 80 kV/140 kV without tin filter) at six different doses (volume computed tomography dose index from 1 to 80 mGy). In separate experiments, rotation times, pitch, and reconstruction kernels were varied at a constant dose and tube voltage. Accuracy was determined by measuring the mean error between virtual non-calcium values in the fluid within and outside of the bone. Image noise was defined as the standard deviation of virtual non-calcium values.ResultsSpectral separation, dose, rotation time, or pitch did not significantly correlate (p > 0.083) with mean error. Increased spectral separation (rs-0.96, p < 0.001) and increased dose (rs-0.98, p < 0.001) correlated significantly with decreased image noise. Increasing sharpness of the reconstruction kernel correlated with mean error (rs 0.83, p = 0.015) and image noise (rs 1.0, p < 0.001).ConclusionsIncreased dose and increased spectral separation significantly lowered image noise in virtual non-calcium images but did not affect the accuracy. Virtual non-calcium reconstructions with similar accuracy and image noise could be achieved at a lower tube-voltage difference by increasing the dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.