Building performance can be expressed by different indicators as primary energy use, environmental load and/or the indoor environmental quality and a building performance simulation can provide the decision maker with a quantitative measure of the extent to which an integrated design solution satisfies the design requirements and objectives. In the design of sustainable Buildings it is beneficial to identify the most important design parameters in order to develop more efficiently alternative design solutions or reach optimized design solutions. A sensitivity analysis makes it possible to identify the most important parameters in relation to building performance and to focus design and optimization of sustainable buildings on these fewer, but most important parameters. The sensitivity analyses will typically be performed at a reasonably early stage of the building design process, where it is still possible to influence the important parameters. The methodology is presented and an application example is given for design of an office building in Denmark.
Personal exposure in a displacement ventilated room is examined. The stratified flow and the considerable concentration gradients necessitate an improvement of the widely used fully mixing compartmental approach. The exposure of a seated and a standing person in proportion to the stratification height is examined by means of full‐scale measurements. A breathing thermal manikin is used to simulate a person. It is found that the flow in the boundary layer around a person is able to a great extent to entrain and transport air from below the breathing zone. In the case of non‐passive, heated contaminant sources, this entrainment improves the indoor air quality. Measurements of exposure due to a passive contaminant source show a significant dependence on the flow field as well as on the contaminant source location. Poor system performance is found in the case of a passive contaminant released in the lower part of the room close to the occupant. A personal exposure model for displacement ventilated rooms is proposed. The model takes the influence of gradients and the human thermal boundary layer into account. Two new quantities describing the interaction between a person and the ventilation are defined.
In real-life ventilated enclosures like operating rooms movements take place. Persons' movements may influence the local flow field as well as the contaminant field substantially. Most often movements are ignored in simulations due to the complexity of the phenomenon. This paper presents an indirect and simple method to consider the influence of movements that may enable modelers to include this important phenomenon in the engineering application of CFD. This may improve practical risk assessment--for instance risk assessment of unintended transport of bacteria during orthopedic surgical operations that may jeopardize the hygiene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.