A new method of material and lubricant testing is demonstrated with a planar contact fretting wear tribometer under typical fretting wear conditions. The usual abstraction of contact geometries with an easy-to-align point or line contacts is deliberately dispensed to do justice to the frequently flat contacts of machine elements (shaft-hub connection, bearing seats, etc.). For the study, a new method of targeted observation of the contact surfaces during the test is used, which allows a time-lapse animation of the fretting wear progress of solid lubricant mixtures. Thus, the formation of possible transfer film build-up and the type of wear mechanism occurring can be visualized. This technique represents, in conjunction with additional analytical methods such as microscopy and SEM/EDX, a powerful tool to provide a better insight into the mechanisms of solid lubricant action under fretting conditions. To demonstrate the potential of this approach, a time to damage study is performed on commercial and self-prepared pastes from solid lubricants and white oil, where calcium hydroxide is a commonly employed solid lubricant for the avoidance of fretting wear is compared to other materials.
With the instrumentality of a newly developed fretting test bench for planar contacts, a state-of-the-art method of inter-mediate imaging helps to understand fretting wear mechanisms of different materials and lubricants. The test bench uses application like planar surfaces unlike the usual point or elliptical contact in model testing (with the tribological test chain). Applications considered prone to fretting wear have large planar contacts – like bearing seats and shaft hub connections – and contact pressures normally perceiv ed as low or uncritical. This article examines a method to evaluate a targeted observation of the surfaces. The method uses a movable upper sample to open the contact and to document an interim status of the test by image recording. Among other things, this is to obtain time-lapse recordings of the progressive wear and tear. Just opening the contact can already influence the tribological system and the result of a test. It is shown whether and how this opening process has an impact on tests with continuous contact.
Anti-fretting pastes are an effective way of protecting the contact partners of shaft-hub connections in an industrial drive system from the wear phenomenon of fretting. qulification of an anti-fretting paste in the entire industrial drive system is not economically feasible due to the wide range of environmental influences. Therefore, the tribological system of a shaft-hub connection is abstracted along a test chain on model levels and investigated on model test rigs. the results are validated using a near-field application with real shaft-hub connections to finally derive a suitalbe model test for future qualification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.