Bistable spin crossover complexes such as [Fe{HB(pz)3}2] (pzH = pyrazole) show promise for sensor applications and electrically‐controlled data storage units, but exploiting their potential hinges on their integration into a functional environment. We here present a system enabling such covalent post‐functionalization steps in both symmetric and asymmetric patterns, based on the amine‐functionalized complex [Fe{HB(4‐NH2pz)(pz)2}2], obtained by reduction of the nitro analogue. The building block aspects of [Fe{HB(4‐NH2pz)(pz)2}2] are showcased by its transformation into amide, imine and azo derivatives, which are structurally and magnetically characterized. All tris(pyrazolyl)borate complexes retain the spin crossover properties of their parent compound, with spin crossover temperatures ranging from 350 to 430 K. The transition parameters are correlated with the electronic properties of the functionalizing group, opening the possibility of fine‐tuning the spin crossover properties of the building block as it is integrated in the environment of choice.
Invited for the cover of this issue is the group of Paul Kögerler from RWTH Aachen University, Germany. The cover image shows an aluminum sheet painted with thermochromic lacquer based on functionalized derivatives of iron(II) bis(tris(pyrazolyl)borate) complexes.
We present first results on the covalent chemical functionalization of single-walled carbon nanotubes with polynuclear {Mn 4 } coordination complexes. Raman spectra prove that the reaction can only be achieved for tubes which have been oxidized to create carboxylic groups. HRTEM is used to show that the reaction can be carried out directly on a substrate as well. Analysis of the D/G intensity ratio for different oxidation times shows that it is possible to reduce the amount of defects created. This is important for the future application of this material in transport devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.