Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) show great potential as drug delivery vectors and new antibiotic drug entities, respectively. The current study deals with the properties of a variety of peptide analogs derived from the well-known CPP penetratin as well as octaarginine and different Tat sequences. The effects of peptide length, guanidinium content, and sequence of non-cationic residues were assessed in mammalian and bacterial cells. The arginine (Arg) content in the penetratin analogs was found to influence eukaryotic cell uptake efficiency, antimicrobial activity towards both Gram-positive and Gram-negative bacteria as well as eukaryotic cell viability. All examined analogs retained the ability to cross eukaryotic membranes giving rise to a distribution within the vacuolar apparatus. Interestingly, a series of shuffled analogs of penetratin with the cationic residues in conserved positions, attain the same α-helical conformation as native penetratin in the presence of cholesterol-containing liposomes, while conformational differences were observed in the presence of highly anionic liposomes. While the antibacterial effect of the two groups of peptides was similar, the eukaryotic cellular uptake of the shuffled analogs was noticeably lower than for native penetratin. Moreover, a point substitution of Met to Leu in native penetratin had no influence on eukaryotic cellular uptake and antimicrobial effect, and only a minor effect on cytotoxicity, in contrast to the fact that the same substitution in the shuffled analog gave rise to reduced eukaryotic cellular uptake while increasing the antibacterial effect and cytotoxicity.
[structure: see text] We describe the synthesis and characterization of the first generation of oligomers consisting of alternating repeats of alpha-amino acids and chiral N-alkyl-beta-alanine (beta-peptoid) residues. These chimeras are stable toward proteolysis, non-hemolytic, and possess antibacterial activity comparable to well-known antimicrobial agents. Moreover, the chimeras exhibit length-dependent, concentration-dependent, solvent-dependent, and ion-strength-dependent ellipticity, indicating the presence of a secondary structure in solution. Thus, alpha-peptide/beta-peptoid oligomers represent a promising novel peptidomimetic backbone construct for biologically active ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.