Members of the homeodomain leucine zipper (HDZip) family of transcription factors are present in a wide range of plants, from mosses to higher plants, but not in other eukaryotes. The HDZip genes act in developmental processes, including vascular tissue and trichome development, and several of them have been suggested to be involved in the mediation of external signals to regulate plant growth. The Arabidopsis (Arabidopsis thaliana) genome contains 47 HDZip genes, which, based on sequence criteria, have been grouped into four different classes: HDZip I to IV. In this article, we present an overview of the class I HDZip genes in Arabidopsis. We describe their expression patterns, transcriptional regulation properties, duplication history, and phylogeny. The phylogeny of HDZip class I genes is supported by data on the duplication history of the genes, as well as the intron/exon patterning of the HDZip-encoding motifs. The HDZip class I genes were found to be widely expressed and partly to have overlapping expression patterns at the organ level. Further, abscisic acid or water deficit treatments and different light conditions affected the transcript levels of a majority of the HDZip I genes. Within the gene family, our data show examples of closely related HDZip genes with similarities in the function of the gene product, but a divergence in expression pattern. In addition, six HDZip class I proteins tested were found to be activators of gene expression. In conclusion, several HDZip I genes appear to regulate similar cellular processes, although in different organs or tissues and in response to different environmental signals.
The homeodomain leucine zipper (HD-Zip) genes encode transcription factors that have diverse functions in plant development and have often been implicated in stress adaptation. The HD-Zip genes are the most abundant group of homeobox (HB) genes in plants and do not occur in other eukaryotes. This paper describes the complete annotation of the HD-Zip families I, II and III from rice and compares these gene families with Arabidopsis in a phylogeny reconstruction. Orthologous pairs of rice and Arabidopsis HD-Zip genes were predicted based on neighbour joining and maximum parsimony (MP) trees with support of conserved intron-exon organization. Additionally, a number of HD-Zip genes appeared to be unique to rice. Searching of EST and cDNA databases and expression analysis using RT-PCR showed that 30 out of 31 predicted rice HD-Zip genes are expressed. Most HD-Zip genes were broadly expressed in mature plants and seedlings, but others showed more organ specific patterns. Like in Arabidopsis and other dicots, a subset of the rice HD-Zip I and II genes was found to be regulated by drought stress. We identified both drought-induced and drought-repressed HD-Zip genes and demonstrate that these genes are differentially regulated in drought-sensitive versus drought-tolerant rice cultivars. The drought-repressed HD-Zip family I gene, Oshox4, was selected for promoter-GUS analysis, showing that drought-responsiveness of Oshox4 is controlled by the promoter and that Oshox4 expression is predominantly vascular-specific. Loss-of-function analysis of Oshox4 revealed no specific phenotype, but overexpression analysis suggested a role for Oshox4 in elongation and maturation processes.
Lipophilic statins purportedly exert anti-tumoral effects on breast cancer by decreasing proliferation and increasing apoptosis. HMG-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway, is the target of statins. However, data on statin-induced effects on HMGCR activity in cancer are limited. Thus, this pre-operative study investigated statin-induced effects on tumor proliferation and HMGCR expression while analyzing HMGCR as a predictive marker for statin response in breast cancer treatment. The study was designed as a window-of-opportunity trial and included 50 patients with primary invasive breast cancer. High-dose atorvastatin (i.e., 80 mg/day) was prescribed to patients for 2 weeks before surgery. Pre- and post-statin paired tumor samples were analyzed for Ki67 and HMGCR immunohistochemical expression. Changes in the Ki67 expression and HMGCR activity following statin treatment were the primary and secondary endpoints, respectively. Up-regulation of HMGCR following atorvastatin treatment was observed in 68 % of the paired samples with evaluable HMGCR expression (P = 0.0005). The average relative decrease in Ki67 expression following atorvastatin treatment was 7.6 % (P = 0.39) in all paired samples, whereas the corresponding decrease in Ki67 expression in tumors expressing HMGCR in the pre-treatment sample was 24 % (P = 0.02). Furthermore, post-treatment Ki67 expression was inversely correlated to post-treatment HMGCR expression (rs = -0.42; P = 0.03). Findings from this study suggest that HMGCR is targeted by statins in breast cancer cells in vivo, and that statins may have an anti-proliferative effect in HMGCR-positive tumors. Future studies are needed to evaluate HMGCR as a predictive marker for the selection of breast cancer patients who may benefit from statin treatment.
We analyze the dynamics of the helical edge modes of a quantum spin Hall state in the presence of a spatially nonuniform Rashba spin-orbit (SO) interaction. A randomly fluctuating Rashba SO coupling is found to open a scattering channel which causes localization of the edge modes for a weakly screened electron-electron (e-e) interaction. A periodic modulation of the SO coupling, with a wave number commensurate with the Fermi momentum, makes the edge insulating already at intermediate strengths of the e-e interaction. We discuss implications for experiments on edge state transport in a HgTe quantum well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.