Current tissue engineering approaches combine different scaffold materials with living cells to provide biological substitutes that can repair and eventually improve tissue functions. Both natural and synthetic materials have been fabricated for transplantation of stem cells and their specific differentiation into muscles, bones, and cartilages. One of the key objectives for bone regeneration therapy to be successful is to direct stem cells' proliferation and to accelerate their differentiation in a controlled manner through the use of growth factors and osteogenic inducers. Here we show that graphene provides a promising biocompatible scaffold that does not hamper the proliferation of human mesenchymal stem cells (hMSCs) and accelerates their specific differentiation into bone cells. The differentiation rate is comparable to the one achieved with common growth factors, demonstrating graphene's potential for stem cell research.
Bulk amorphous materials have been studied extensively and are used widely. Yet, their atomic arrangement remains an open issue. They are generally believed to be Zachariasen continuous random networks (Z-CRNs) 1 , but recent experimental evidence favours the competing crystallite model in the case of amorphous silicon 2-4 .Corresponding questions in 2D materials are wide open. Here we report the synthesis of centimetre-scale, freestanding, continuous, and stable monolayer amorphous carbon (MAC), topologically distinct from disordered graphene, by laser-assisted chemical vapour deposition 5 . Unlike bulk materials, the amorphous structure of MAC can be determined by atomic-resolution imaging. Extensive characterisation reveals complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and 5-, 6-, 7-, and 8-member rings. The ring distribution is not a Z-CRN but resembles the competing (nano)crystallite model 6 . A corresponding model has been constructed and enables density-functional-theory calculations of MAC properties, in accord with observations. Direct measurements
The formation and growth of maghemite (γ-Fe2O3) nanoparticles from ammonium iron(III) citrate solutions (C(6)O(7)H(6) · xFe(3+) · yNH(4)) in hydrothermal synthesis conditions have been studied by in situ total scattering. The local structure of the precursor in solution is similar to that of the crystalline coordination polymer [Fe(H(2)cit(H2O)](n), where corner-sharing [FeO(6)] octahedra are linked by citrate. As hydrothermal treatment of the solution is initiated, clusters of edge-sharing [FeO(6)] units form (with extent of the structural order <5 Å). Tetrahedrally coordinated iron subsequently appears, and as the synthesis continues, the clusters slowly assemble into crystalline maghemite, giving rise to clear Bragg peaks after 90 s at 320 °C. The primary transformation from amorphous clusters to nanocrystallites takes place by condensation of the clusters along the corner-sharing tetrahedral iron units. The crystallization process is related to large changes in the local structure as the interatomic distances in the clusters change dramatically with cluster growth. The local atomic structure is size dependent, and particles smaller than 6 nm are highly disordered. The final crystallite size (<10 nm) is dependent on both synthesis temperature and precursor concentration.
Magnetic spinel ferrite MFe2O4 (M = Mn, Co, Ni, Zn) nanoparticles have been prepared via simple, green and scalable hydrothermal synthesis pathways utilizing sub- and supercritical conditions to attain specific product characteristics. The crystal-, magnetic- and micro-structures of the prepared crystallites have been elucidated through meticulous characterization employing several complementary techniques. Analysis of energy dispersive X-ray spectroscopy (EDS) and X-ray absorption near edge structure (XANES) data verifies the desired stoichiometries with divalent M and trivalent Fe ions. Robust structural characterization is carried out by simultaneous Rietveld refinement of a constrained structural model to powder X-ray diffraction (PXRD) and high-resolution neutron powder diffraction (NPD) data. The structural modeling reveals different affinities of the 3d transition metal ions for the specific crystallographic sites in the nanocrystallites, characterized by the spinel inversion degree, x, [M2+1-xFe3+x]tet[M2+xFe3+2-x]octO4, compared to the well-established bulk structures. The MnFe2O4 and CoFe2O4 nanocrystallites exhibit random disordered spinel structures (x = 0.643(3) and 0.660(6)), while NiFe2O4 is a completely inverse spinel (x = 1.00) and ZnFe2O4 is close to a normal spinel (x = 0.166(10)). Furthermore, the size, size distribution and morphology of the nanoparticles have been assessed by peak profile analysis of the diffraction data, transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The differences in nanostructure, spinel inversion and distinct magnetic nature of the M2+ ions directly alter the magnetic structures of the crystallites at the atomic-scale and consequently the macroscopic magnetic properties of the materials. The present study serves as an important structural benchmark for the rapidly expanding field of spinel ferrite nanoparticle research.
The production of large amounts of hydrogen bubbles, typical of electrochemical delamination methods based on the electrolysis of water, results in mechanical damage to graphene during the delamination, transfer, and drying steps. Here a novel 'bubble-free' delamination method is introduced which exploits the electrochemical dissolution of native copper oxide at a potential lower than that required for the formation of hydrogen bubbles, enabling the production of defect-free graphene stack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.