Background:Although the role of human papilloma virus (HPV) in cervical squamous cell carcinoma (CSCC) is well established, the role in head and neck SCC (HNSCC) is less clear. MicroRNAs (miRNAs) have a role in the cancer development, and HPV status may affect the miRNA expression pattern in HNSCC. To explore the influence of HPV in HNSCC, we made a comparative miRNA profile of HPV-positive (HPV+) and HPV-negative (HPV−) HNSCC against CSCC.Methods:Fresh frozen and laser microdissected-paraffin-embedded samples obtained from patients with HPV+/HPV− HNSCC, CSCC and controls were used for microarray analysis. Differentially expressed miRNAs in the HPV+ and HPV− HNSCC samples were compared with the differentially expressed miRNAs in the CSCC samples.Results:Human papilloma virus positive (+) HNSCC had a distinct miRNA profile compared with HPV− HNSCC. Significantly more similarity was seen between HPV+ HNSCC and CSCC than HPV− and CSCC. A set of HPV core miRNAs were identified. Of these especially the miR-15a/miR-16/miR195/miR-497 family, miR-143/miR-145 and the miR-106-363 cluster appear to be important within the known HPV pathogenesis.Conclusion:This study adds new knowledge to the known pathogenic pathways of HPV and substantiates the oncogenic role of HPV in subsets of HNSCCs.
This study indicates a substantial additive effect of Mg-depletion on cisplatin induced renal toxicity as evidenced by significant changes in plasma creatinine and urea, renal failure induced mortality and loss of renal transporters. This should give cause for concern since the nephrotoxicity observed during cisplatin treatment might be substantiated by the known Mg-loss associated with cisplatin treatment especially in patients suffering from intense gastro-intestinal side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.