In Drosophila, two chromosomes require special mechanisms to balance their transcriptional output to the rest of the genome. These are the male-specific lethal complex targeting the male X chromosome and Painting of fourth targeting chromosome 4. Here, we explore the role of histone H3 methylated at lysine-36 (H3K36) and the associated methyltransferases-Set2, NSD, and Ash1-in these two chromosome-specific systems. We show that the loss of Set2 impairs the MSL complex-mediated dosage compensation; however, the effect is not recapitulated by H3K36 replacement and indicates an alternative target of Set2. Unexpectedly, balanced transcriptional output from the fourth chromosome requires intact H3K36 and depends on the additive functions of NSD and Ash1. We conclude that H3K36 methylation and the associated methyltransferases are important factors to balance transcriptional output of the male X chromosome and the fourth chromosome. Furthermore, our study highlights the pleiotropic effects of these enzymes.
In Drosophila, the male-specific lethal (MSL) complex specifically targets the male X chromosome and participates in a twofold increase in expression output leading to functional dosage compensation. The complex includes five proteins and two non-coding RNAs (ncRNAs). A number of additional associated factors have also been identified. However, the components’ roles and interactions have not been fully elucidated. The in situ proximity ligation assay (PLA) provides a sensitive means to determine whether proteins and other factors have bound to chromosomes in close proximity to each other, and thus may interact. Thus, we modified, tested, and applied the assay to probe interactions of MSL complex components on polytene chromosomes. We show that in situ PLA can detect and map both protein-protein and protein-ncRNA interactions on polytene chromosomes at high resolution. We further show that all five protein components of the MSL complex are in close proximity to each other, and the ncRNAs roX1 and roX2 bind the complex in close proximity to MLE. Our results also indicate that JIL1, a histone H3 Ser10 kinase enriched on the male X chromosome, interacts with MSL1 and MSL2, but not MSL3 of the MSL complex. In addition, we corroborate proposed interactions of the MSL complex with both CLAMP and TopoII.Electronic supplementary materialThe online version of this article (doi:10.1007/s00412-015-0509-x) contains supplementary material, which is available to authorized users.
Development of the Drosophila visceral muscle depends on Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) signaling, which specifies founder cells (FCs) in the circular visceral mesoderm (VM). Although Alk activation by its ligand Jelly Belly (Jeb) is well characterized, few target molecules have been identified. Here, we used targeted DamID (TaDa) to identify Alk targets in embryos overexpressing Jeb versus embryos with abrogated Alk activity, revealing differentially expressed genes, including the Snail/Scratch family transcription factor Kahuli (Kah). We confirmed Kah mRNA and protein expression in the VM, and identified midgut constriction defects in Kah mutants similar to those of pointed (pnt). ChIP and RNA-Seq data analysis defined a Kah target-binding site similar to that of Snail, and identified a set of common target genes putatively regulated by Kah and Pnt during midgut constriction. Taken together, we report a rich dataset of Alk-responsive loci in the embryonic VM and functionally characterize the role of Kah in the regulation of embryonic midgut morphogenesis.
Transposable elements constitute a substantial portion of most eukaryotic genomes and their activity can lead to developmental and neuronal defects. In the germline, transposon activity is antagonized by the PIWI-interacting RNA pathway tasked with repression of transposon transcription and degrading transcripts that have already been produced. However, most of the genes required for transposon control are not expressed outside the germline, prompting the question: what causes deleterious transposons activity in the soma and how is it managed? Here, we show that disruptions of the Histone 3 lysine 36 methylation machinery led to increased transposon transcription inDrosophila melanogasterbrains and that there is division of labour for the repression of transposable elements between the different methyltransferases Set2, NSD, and Ash1. Furthermore, we show that disruption of methylation leads to somatic activation of key genes in the PIWI-interacting RNA pathway and the preferential production of RNA from dual-strand piRNA clusters.
Development of the midgut visceral muscle of Drosophila crucially depends on Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) signalling, which is needed to specify founder cells (FCs) in the circular visceral mesoderm (VM). While activation of the Alk receptor by its ligand Jelly Belly (Jeb) is well characterized, only a small number of target molecules have been identified. Here, we assayed RNA polymerase II (Pol II) occupancy in VM cells by using the targeted DamID (TaDa) approach. To identify Alk targets we employed comparative analysis of embryos overexpressing Jeb versus embryos with abrogated Alk activity, revealing differential expression of a number of genes, including the Snail/Scratch family transcription factor Kahuli (Kah). Upon further in vivo validation, we confirmed that Alk signalling regulates Kah mRNA expression in the VM. We show that Kah mutants display defects in the formation of midgut constrictions, similar to that of pointed (pnt) mutants. Analysis of publicly available ChIP data defined a Kah target-binding site similar to that of Snail. In addition, we compared genes that were differentially expressed in Kah mutants with publicly available Kah- and Pnt-ChIP datasets identifying a set of common target genes putatively regulated by Kah and Pnt in midgut constriction. Taken together, we (i) report a rich dataset of Alk responsive loci in the embryonic VM, (ii) provide the first functional characterization of the Kah transcription factor, identifying a role in embryonic midgut constriction, and (iii) suggest a model in which Kah and Pnt cooperate in embryonic midgut morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.