Key Points• GlycoPEGylated demonstrates the same efficacy and prolonged effect in animal models as native FVIII.• Circulatory half-life of glycoPEGylated FVIII (N8-GP) is prolonged by approximately twofold in several species.Frequent infusions of intravenous factor VIII (FVIII) are required to prevent bleeding associated with hemophilia A. To reduce the treatment burden, recombinant FVIII with a longer half-life was developed without changing the protein structure. FVIII-polyethylene glycol (PEG) conjugates were prepared using an enzymatic process coupling PEG (ranging from 10 to 80 kDa) selectively to a unique O-linked glycan in the FVIII B-domain. Binding to von Willebrand factor (VWF) was maintained for all conjugates. Upon cleavage by thrombin, the B-domain and the associated PEG were released, generating activated FVIII (FVIIIa) with the same primary structure and specific activity as native FVIIIa. In both FVIII-and VWF-deficient mice, the half-life was found to increase with the size of PEG. In vivo potency and efficacy of FVIII conjugated with a 40-kDa PEG (N8-GP) and unmodified FVIII were not different. N8-GP had a longer duration of effect in FVIII-deficient mouse models, approximately a twofold prolonged half-life in mice, rabbits, and cynomolgus monkeys; however, the prolongation was less pronounced in rats. Binding capacity of N8-GP on human monocyte-derived dendritic cells was reduced compared with unmodified FVIII, resulting in several-fold reduced cellular uptake. In conclusion, N8-GP has the potential to offer efficacious prevention and treatment of bleeds in hemophilia A at reduced dosing frequency. (Blood. 2013;121(11):2108-2116
Inter-alpha-inhibitor-derived bikunin was purified and the molecular mass was determined to be approximately 8.7 kDa higher than the prediction based on the protein sequence, suggesting extensive posttranslational modifications. These modifications were identified and characterized by a combination of protein and carbohydrate analytical techniques. Three modifications were identified: (i) glycosylation of Ser(10), (ii) glycosylation of Asn(45), and (iii) a heterogeneous truncation of the C-terminus. The Asn(45) associated glycan was shown to be a homogenous "complex type" biantennary structure. The chondroitin-4-sulfate (CS) chain attached to Ser(10) was analyzed by both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and acrylamide gel electrophoresis after partial chondroitin ABC lyase digestion. The analyses showed that the CS chains were composed of 15 +/- 3 [GlcUA-GalNAc] disaccharide units. On average, every forth disaccharide was sulfated, and these sulfated disaccharides appeared to be more common near the reducing end. Anion exchange chromatography at pH 3. 4 of intact bikunin resulted in the isolation of four isotypes shown to differ only in the amount of sulfation. Heavy chain 1 (HC1) and heavy chain 2 (HC2) are attached to the CS by a novel cross-link [Enghild, J. J., Salvesen, G., Hefta, S. A., Thogersen, I. B., Rutherfurd, S., and Pizzo, S. V. (1991) J. Biol. Chem. 266, 747-751], and the order in which the two heavy chains are positioned on the CS was examined. The results indicate that HC1 is in close proximity to HC2 and both are near the less sulfated nonreducing end of the CS. Taken together, the data show the following organization of the IalphaI molecule: [GlcUA-GalNAc](a)-HC1-[GlcUA-GalNAc](b)-HC2-[GlcUA-GalNAc](c)-Gal -Gal-Xyl-Ser(10)-bikunin, (a + b + c = 12-18 disaccharides).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.