A modular sensor application for measuring athlete performance in skiing sports was developed. Using inertial measurement units (IMUs) and load cells in a modular system, a force orientation measurement system, FOMS, was developed. A functioning prototype capable of measuring ski sports dynamics was created. Data processing using the system, a validation of the prototype in terms of angle measurement IMU accuracy, example data from in-field athlete testing, and visualization by animations are described. The system developed contains four subsystems: a controller, two pole measuring modules, and a terrain-measuring module. The system structure also allows for additional modules, making the system applicable to different sports. The IMUs use orientation-sensing components to measure pole orientations, which are used to calculate decomposed forces relative to the terrain. Data from different modules are synchronized using wireless communication and saved on SD cards with time stamps. A validation experiment was conducted in which the angles from the modules were compared with the Oqus motion capture system from Qualisys. Examples for athlete testing in both cross country and alpine skiing were calculated from the matrix provided by the different modules and are presented in graphs to evaluate the athlete. In addition, the relative pole/terrain coordinates are visualized in 2D and 3D animations for analyzing the movement pattern in connection with the applied forces, opening up a whole new level of sports analysis.
This article presents a design of an experiment for investigating the effect of changing the geometry of Paralympic alpine sit-ski poles/outriggers in the LW 10-12 class. An experiment design for mapping an individual athlete’s performance parameters has been developed, with a resolution for finding the optimal outrigger geometry. By prototyping an adjustable experiment setup with implemented sensor systems, the performance increase can be analysed and implemented in new equipment. Results show that changing double poling geometry provides a substantial performance increase, regarding time and propulsive force.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.