According to the Intergovernmental Panel on Climate Change (IPCC), scenarios that have a good chance of restricting global warming to less than 2°C involve substantial cuts in anthropogenic greenhouse gas (GHG) emissions, implemented through large-scale changes in energy systems. The use of renewable energy sources and fossil fuels, in combination with carbon capture and storage (CCS), could help to reduce GHG emissions in the
AbstractThis paper presents the main experiences gained and conclusions drawn from the demonstration of a first-of-its-kind wood-based biomethane production plant (20-MW capacity, 150 dry tonnes of biomass/day) and 10 years of operation of the 2-4-MW (10-20 dry tonnes of biomass/day) research gasifier at Chalmers University of Technology in Sweden. Based on the experience gained, an elaborated outline for commercialization of the technology for a wide spectrum of applications and end products is defined. The main findings are related to the use of biomass ash constituents as a catalyst for the process and the application of coated heat exchangers, such that regular fluidized bed boilers can be retrofitted to become biomass gasifiers. Among the recirculation of the ash streams within the process, presence of the alkali salt in the system is identified as highly important for control of the tar species. Combined with new insights on fuel feeding and reactor design, these two major findings form the basis for a comprehensive process layout that can support a gradual transformation of existing boilers in district heating networks and in pulp, paper and saw mills, and it facilitates the exploitation of existing oil refineries and petrochemical plants for large-scale production of renewable fuels, chemicals, and materials from biomass and wastes. The potential for electrification of those process layouts are also discussed. The commercialization route represents an example of how biomass conversion develops and integrates with existing industrial and energy infrastructures to form highly effective systems that deliver a wide range of end products. Illustrating the potential, the existing fluidized bed boilers in Sweden alone represent a jet fuel production capacity that corresponds to 10% of current global consumption.
7
In catalysis, nanoparticles enable chemical transformations and their structural and chemical fingerprints control activity. To develop understanding of such fingerprints, methods studying catalysts at realistic conditions have proven instrumental. Normally, these methods either probe the catalyst bed with low spatial resolution, thereby averaging out single particle characteristics, or probe an extremely small fraction only, thereby effectively ignoring most of the catalyst. Here, we bridge the gap between these two extremes by introducing highly multiplexed single particle plasmonic nanoimaging of model catalyst beds comprising 1000 nanoparticles, which are integrated in a nanoreactor platform that enables online mass spectroscopy activity measurements. Using the example of CO oxidation over Cu, we reveal how highly local spatial variations in catalyst state dynamics are responsible for contradicting information about catalyst active phase found in the literature, and identify that both surface and bulk oxidation state of a Cu nanoparticle catalyst dynamically mediate its activity.
Open filters (with low pressure drop) have potential for energy-efficient reduction of particulate matter (PM) from engines. In the work reported here, the capture efficiency of PM in open substrates has been investigated using PM from a real engine under various flow conditions and sampling settings. The observed capture efficiency (CE) confirmed the expected trends that increased residence time and increased temperature give better CE. However, the volatile content (assumed to be hydrocarbons, HC) can increase the apparent CE due to rapid evaporation and/or shrinkage of the PM. In order to quantify these effects, a conceptual model has been implemented that can be used as an in situ analyzer of the PM properties. The results show how exhaust treatment (heating and/or dilution) changes the characteristics of the PM. These properties affect CE and can be used for subsequent catalyst optimization. In addition, the method developed here was used to analyze nucleation-mode PM from a special fuel injection strategy. The results revealed that these particles were mainly nonvolatiles, demonstrating the usefulness of this characterization methodology. Furthermore, an equation for diffusion losses in the rotary dilutor for the DMS500 is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.