Forested areas are increasing across Europe, driven by both reforestation programs and farmland abandonment. While tree planting remains the standard reforestation strategy, there is increased interest in spontaneous regeneration as a cost-effective method with equal or potentially greater benefits. Furthermore, expanding areas of already established forests are left for passive rewilding to promote biodiversity conservation. Effective and objective methods are needed for monitoring and analyzing the development of forest structure under these management scenarios, with airborne laser scanning (lidar: light detection and ranging) being a promising methodology. Here, we assess the structural characteristics and development of unmanaged forests and 28- to 78-year old spontaneously regenerated forests on former agricultural land, relative to managed forests of similar age in Denmark, using 25 lidar-derived metrics in 10- and 30-m grid cells. We analyzed the lidar-derived cell values in a principal component analysis (PCA) and interpreted the axes ecologically, in conjunction with pairwise tests of median and variance of PCA-values for each forest. Spontaneously regenerated forest in general had increased structural heterogeneity compared to planted and managed forests. Furthermore, structural heterogeneity kept increasing in spontaneously regenerated forest across the maximal 78-year timespan investigated. Natural disturbances showed strong impacts on vegetation structure, leading to both structural homogeneity and heterogeneity. The results illustrate the utility of passive rewilding for generating structurally heterogeneous forested nature areas, and the utility of lidar surveys for monitoring and interpreting structural development of such forests.
The biorefinery technology aiming at protein extraction is rising and identification of suitable plant biomass input with valuable protein compounds for extraction is needed. Forage crops has been evaluated by the Cornell Net Carbohydrate and Protein System (CNCPS), and the result used as proxy of extractable protein in a biorefinery process. This serves as a helpful link between crop production and refinery output, however, the method has never been validated. Such validation is the main aim of this study. Five forage species: white clover, red clover, lucerne, perennial ryegrass and tall fescue were cut at four dates during spring and processed in a lab-scale refinery (screw press and subsequent green juice extraction). The pulp fraction and the precipitated protein concentrate were both CNCPS analyzed to follow the initial crude protein (CP) plant input into these two fractions.Total recovery in concentrate was highest for the legumes, which points to an advantage of these species in protein extraction setups. High recovery of B1 and B2 (50% or higher for the grasses) in the pulp demonstrated a large proportion of soluble protein ending up in the fibrous pulp and shed light on the reason behind high feed quality of the pulp fraction. In conclusion, the existing tentative assumption of extractable protein being equal to CNCPS fractions of B1 and B2 and partly B3 was shown to be too simplified. The presented findings can improve crop species screening in terms of expected extractable protein yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.