OBJECTIVETo assess whether intermittent real-time continuous glucose monitoring (CGM) improves glycemic control and pregnancy outcome in unselected women with pregestational diabetes.RESEARCH DESIGN AND METHODSA total of 123 women with type 1 diabetes and 31 women with type 2 diabetes were randomized to use real-time CGM for 6 days at 8, 12, 21, 27, and 33 weeks in addition to routine care, including self-monitored plasma glucose seven times daily, or routine care only. To optimize glycemic control, real-time CGM readings were evaluated by a diabetes caregiver. HbA1c, self-monitored plasma glucose, severe hypoglycemia, and pregnancy outcomes were recorded, with large-for-gestational-age infants as the primary outcome.RESULTSWomen assigned to real-time CGM (n = 79) had baseline HbA1c similar to that of women in the control arm (n = 75) (median 6.6 [range 5.3–10.0] vs. 6.8% [5.3–10.7]; P = 0.67) (49 [34–86] vs. 51 mmol/mol [34–93]). Forty-nine (64%) women used real-time CGM per protocol. At 33 weeks, HbA1c (6.1 [5.1–7.8] vs. 6.1% [4.8–8.2]; P = 0.39) (43 [32–62] vs. 43 mmol/mol [29–66]) and self-monitored plasma glucose (6.2 [4.7–7.9] vs. 6.2 mmol/L [4.9–7.9]; P = 0.64) were comparable regardless of real-time CGM use, and a similar fraction of women had experienced severe hypoglycemia (16 vs. 16%; P = 0.91). The prevalence of large-for-gestational-age infants (45 vs. 34%; P = 0.19) and other perinatal outcomes were comparable between the arms.CONCLUSIONSIn this randomized trial, intermittent use of real-time CGM in pregnancy, in addition to self-monitored plasma glucose seven times daily, did not improve glycemic control or pregnancy outcome in women with pregestational diabetes.
Interleukin-1 (IL-1) is cytotoxic to rat pancreatic -cells by inhibiting glucose oxidation, causing DNA damage and inducing apoptosis. Nitric oxide (NO) is a necessary but not sufficient mediator of these effects. IL-1 induced kinase activity toward Elk-1, activation transcription factor 2, c-Jun, and heat shock protein 25 in rat islets. By Western blotting with phosphospecific antibodies and by immunocomplex kinase assay, IL-1 was shown to activate extracellular signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (p38) in islets and rat insulinoma cells. Specific ERK1/2 and p38 inhibitors individually reduced but in combination blocked IL-1-mediated islet NO synthesis, and reverse transcription-polymerase chain reaction of inducible NO synthase mRNA showed that ERK1/2 and p38 controlled IL-1-induced islet inducible NO synthase expression at the transcriptional level. Hyperosmolarity caused phosphorylation of Elk-1, activation transcription factor 2, and heat shock protein 25 and activation of ERK1/2 and p38 in islets comparable to that induced by IL-1 but did not lead to NO synthesis. Inhibition of p38 but not of ERK1/2 attenuated IL-1-mediated inhibition of glucose-stimulated insulin release. We conclude that ERK1/2 and p38 activation is necessary but not sufficient for IL-1-mediated -cell NO synthesis and that p38 is involved in signaling of NO-independent effects of IL-1 in -cells.
A model of the pathogenesis of insulin-dependent diabetes mellitus, i.e. the initial phase of beta-cell destruction, is proposed: in a cascade-like fashion efficient antigen presentation, unbalanced cytokine, secretion and poor beta-cell defence result in beta-cell destruction by toxic free radicals (O2- and nitric oxide) produced by the beta cells themselves. This entire process is under polygenetic control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.