This paper introduces a simple model for subsurface light transport in translucent materials. The model enables efficient simulation of effects that BRDF models cannot capture, such as color bleeding within materials and diffusion of light across shadow boundaries. The technique is efficient even for anisotropic, highly scattering media that are expensive to simulate using existing methods. The model combines an exact solution for single scattering with a dipole point source diffusion approximation for multiple scattering. We also have designed a new, rapid image-based measurement technique for determining the optical properties of translucent materials. We validate the model by comparing predicted and measured values and show how the technique can be used to recover the optical properties of a variety of materials, including milk, marble, and skin. Finally, we describe sampling techniques that allow the model to be used within a conventional ray tracer.
In this paper, we propose a new approach to numerical smoke simulation for computer graphics applications. The method proposed here exploits physics unique to smoke in order to design a numerical method that is both fast and efficient on the relatively coarse grids traditionally used in computer graphics applications (as compared to the much finer grids used in the computational fluid dynamics literature). We use the inviscid Euler equations in our model, since they are usually more appropriate for gas modeling and less computationally intensive than the viscous Navier-Stokes equations used by others. In addition, we introduce a physically consistent vorticity confinement term to model the small scale rolling features characteristic of smoke that are absent on most coarse grid simulations. Our model also correctly handles the interaction of smoke with moving objects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.