Rationale: Fibroblasts are believed to be the major cells responsible for the production and maintenance of extracellular matrix. Alterations in fibroblast functional capacity, therefore, could play a role in the pathogenesis of pulmonary emphysema, which is characterized by inadequate maintenance of tissue structure. Objectives: To evaluate the hypothesis that deficient fibroblast repair characterizes cells obtained from individuals with chronic obstructive pulmonary disease (COPD) compared with control subjects. Methods: Fibroblasts were cultured from lung tissue obtained from individuals undergoing thoracotomy and were characterized in vitro. Measurements and Main Results: Fibroblasts from individuals with COPD, defined by reduced FEV 1 , manifested reduced chemotaxis toward fibronectin and reduced contraction of three-dimensional collagen gels, two bioassays associated with fibroblast repair function. At least two mechanisms appear to account for these differences. Prostaglandin E (PGE), a known inhibitor of fibroblast repair functions, was produced in increased amount by fibroblasts from subjects with COPD, which also expressed increased amounts of the receptors EP2 and EP4, both of which signal through cyclic AMP. Incubation of fibroblasts with indomethacin or with the PKA inhibitor KT-5720 partially restored COPD subject fibroblast function. In addition, fibroblasts from subjects with COPD produced more transforming growth factor (TGF)-b1, but manifested reduced response to TGF-b1. The functional alterations in fibroblasts correlated with both lung function assessed by FEV 1 and, for the data available, with severity of emphysema assessed by DL CO . Conclusions: Fibroblasts from individuals with COPD have reduced capability to sustain tissue repair, which suggests that this may be one mechanism that contributes to the development of emphysema.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We described physical activity measures and hourly patterns in patients with chronic obstructive pulmonary disease (COPD) after stratification for generic and COPD-specific characteristics and, based on multiple physical activity measures, we identified clusters of patients. In total, 1001 patients with COPD (65% men; age, 67 years; forced expiratory volume in the first second [FEV1], 49% predicted) were studied cross-sectionally. Demographics, anthropometrics, lung function and clinical data were assessed. Daily physical activity measures and hourly patterns were analysed based on data from a multisensor armband. Principal component analysis (PCA) and cluster analysis were applied to physical activity measures to identify clusters. Age, body mass index (BMI), dyspnoea grade and ADO index (including age, dyspnoea and airflow obstruction) were associated with physical activity measures and hourly patterns. Five clusters were identified based on three PCA components, which accounted for 60% of variance of the data. Importantly, couch potatoes (i.e. the most inactive cluster) were characterised by higher BMI, lower FEV1, worse dyspnoea and higher ADO index compared to other clusters (p < 0.05 for all). Daily physical activity measures and hourly patterns are heterogeneous in COPD. Clusters of patients were identified solely based on physical activity data. These findings may be useful to develop interventions aiming to promote physical activity in COPD.
BackgroundThe origin of collagen-producing cells in lung fibrosis is unclear. The involvement of embryonic signaling pathways has been acknowledged and trans-differentiation of epithelial cells is discussed critically. The work presented here investigates the role of TGFB in cytoskeleton remodeling and the expression of Epithelial-Mesenchymal-Transition markers by Alveolar Epithelial Cells Type II and tests the hypothesis if human alveolar epithelial cells are capable of trans-differentiation and production of pro-fibrotic collagen.MethodsPrimary human alveolar epithelial cells type II were extracted from donor tissues and stimulated with TGFβ and a TGFβ-inhibitor. Transcriptome and pathway analyses as well as validation of results on protein level were conducted.ResultsA TGFβ-responsive fingerprint was found and investigated for mutual interactions. Interaction modules exhibited enrichment of genes that favor actin cytoskeleton remodeling, differentiation processes and collagen metabolism. Cross-validation of the TGFβ-responsive fingerprint in an independent IPF dataset revealed overlap of genes and supported the direction of regulated genes and TGFβ-specificity.ConclusionsPrimary human alveolar epithelial cells type II seem undergo a TGFβ-dependent phenotypic change, exhibit differential expression of EMT markers in vitro and acquire the potential to produce collagen.Electronic supplementary materialThe online version of this article (10.1186/s12931-018-0841-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.