The surfaces of waimirite β-YF 3 have been studied for their fluorine and chlorine versus water affinity. Bonding patterns of HF, HCl, and H 2 O chemically adsorbed onto surfaces of ( 010), ( 100), (011), and (101) have been quantified by density functional theory applying energy decomposition analysis. We found that the adsorption of H 2 O is dominated by about 65% of electrostatics, which causes a low surface sensitivity and weak interactions. On the contrary, the adsorptions of HF and HCl are driven by strong hydrogen bonds resulting in a highly surface-dependent ratio of 30-60% electrostatic versus orbital contribution. Among the stoichiometric surfaces, the shortest and strongest hydrogen bonds and consequently most covalent bonding patterns are found within YF 3 ÁHCl. However, when including the preparation energy, each surface favors the adsorption of HF over HCl, which reproduces the higher affinity of yttrium towards fluoride over chloride, previously known for solutions, also for the solid state.
The two elements, yttrium and holmium, form a geochemical twin pair as their cations possess equivalent ratios of charge to radius. However, despite their equal electrostatics, a subtle difference in their fluoride or chloride affinity is known within solutions. In this work, we investigated whether this affinity gap is also present within the solid phase and how it depends on the surface configuration. We modeled adsorptions onto β-YF3 (waimirite) and isostructural β-HoF3 by periodic density functional theory. To draw conclusions on the affinity toward fluoride and chloride vs. water, adsorbates of HF, HCl, or H2O onto any of the four highly abundant surfaces of (010), (100), (011), and (101) were studied. Among others, the conformational landscape was explored by 200 ps of ab initio molecular dynamics. For stoichiometric surfaces of both MF3, we indeed found stronger adsorptions for HF than HCl. All (hkl)·H2O showed slightly stronger adsorption energies for HoF3, while for HF and HCl, the metal preferences varied by the surface. While (100) showed the strongest preference for HoF3, (101) preferred YF3 by the same magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.