Molecular methods allow a comprehensive view on uncultured microbial communities in dimension stone. In the presented study, we focus on depth profiles of microbial colonization in sandstones with different porosity and overall durability. The sandstones were exposed to the environment for several years and were covered with a dense brown-greenish biofilm. Samples from the stone surface, from 0.5 cm and from 3.0 cm depths were taken under sterile conditions and subjected to analysis of microbial DNA (sequencing of 18S rRNA genes) and culturing experiments. A silica cemented Buntsandstein was just colonized at the stone surface, predominantly with algal and fungal microorganisms. Here, no environmental DNA could be isolated from depth profiles. From a calcitic Chirotheriensandstein with high pore size (shown by thin sections), environmental DNA from depths down to 3 cm could be retrieved. Apart from filamentous fungi and algae, mosses clearly dominated the microbial community. Hence, moss rhizoids or protonemata must be abundant as endoliths inside the stone material. It is reasonable to assume that the rhizoids may contribute to an increase in pore size by active penetration of the clastic material, even though colonization of the surface by mosses may not be necessarily obvious. This feature may imply stronger impact of stone decay induced by endolithic growth of bryophytes than hitherto observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.