Campylobacter jejuni is the most common bacterial cause of foodborne zoonosis in the European Union. Infections are often linked to the consumption and handling of poultry meat. The aim of the present study was to investigate the caecal microbiota of birds infected with C. jejuni at different ages. Therefore, a total of 180 birds of the laying hybrid Lohmann Brown-Classic were housed in 12 subgroups of 15 animals each in three performed repetitions. Three birds per subgroup were experimentally infected with C. jejuni at an age of about 21 days and about 78 days (4.46 ± 0.35 log10 CFU/bird). Twenty-one days after experimental infection, microbiome studies were performed on 72 caecal samples of dissected birds (three primary infected and three further birds/subgroup). Amplification within the hypervariable region V 4 of the 16S rRNA gene was performed and sequenced with the Illumina MiSeq platform. Statistical analyses were performed using SAS® Enterprise Guide® (version 7.1) and R (version 3.5.2). Both factors, the experimental replication (p < 0.001) and the chickens’ age at infection (p < 0.001) contributed significantly to the differences in microbial composition of the caecal samples. The factor experimental replication explained 24% of the sample’s variability, whereas the factor age at infection explained 14% thereof. Twelve of 32 families showed a significantly different count profile between the two age groups, whereby strongest differences were seen for seven families, among them the family Campylobacteraceae (adjusted p = 0.003). The strongest difference between age groups was seen for a bacterial species that is assigned to the genus Turicibacter which in turn belongs to the family Erysipelotrichaceae (adjusted p < 0.0001). Correlation analyses revealed a common relationship in both chicken ages at infection between the absolute abundance of Campylobacteraceae and Alcaligenaceae, which consists of the genus Parasutterella. In general, concentrations of particular volatile fatty acids (VFA) demonstrated a negative correlation to absolute abundance of Campylobacteraceae, whereby the strongest link was seen for n-butyrate (−0.51141; p < 0.0001). Despite performing consecutive repetitions, the factor experimental replication contributed more to the differences of microbial composition in comparison to the factor age at infection.
Liquid feed is susceptible to microbiological growth. Yeasts are said to cause sudden death in swine due to intestinal gas formation. As not all animals given high yeast content feed fall ill, growth and gas formation potential at body temperature were investigated as possible causally required properties. The best identification method for these environmental yeasts should be tested beforehand. Yeasts derived from liquid diets without (LD − S) and liquid diets with maize silage (LD + S) were examined biochemically (ID32C-test) and with MALDI-TOF with direct smear (DS) and an extraction method (EX). Growth temperature and gas-forming potential were measured. With MALDI-EX, most yeast isolates were identified: Candida krusei most often in LD − S, and C. lambica most often in LD + S, significantly more than in LD − S. Larger colonies, 58.75% of all yeast isolates, were formed at 25 °C rather than at 37 °C; 17.5% of all isolates did not grow at 37 °C at all. Most C. krusei isolates formed high gas amounts within 24 h, whereas none of the C. lambica, C. holmii and most other isolates did. The gas pressure formed by yeast isolates varied more than tenfold. Only a minority of the yeasts were able to produce gas at temperatures common in the pig gut.
Hereditary factor XI (FXI) deficiency is characterized as an autosomal mild to moderate coagulopathy in humans and domestic animals. Coagulation testing revealed FXI deficiency in a core family of Maine Coon cats (MCCs) in the United States. Factor XI-deficient MCCs were homozygous for a guanine to adenine transition resulting in a methionine substitution for the highly conserved valine-516 in the FXI catalytic domain. Immunoblots detected FXI of normal size and quantity in plasmas of MCCs homozygous for V516M. Some FXI-deficient MCCs experienced excessive post-operative/traumatic bleeding. Screening of 263 MCCs in Europe revealed a mutant allele frequency of 0.232 (23.2%). However, V516M was not found among 100 cats of other breeds. Recombinant feline FXI-M516 (fFXI-M516) expressed ~4% of the activity of wild-type fFXI-V516 in plasma clotting assays. Furthermore, fFXIa-M516 cleaved the chromogenic substrate S-2366 with ~4.3-fold lower catalytic efficacy (kcat/Km) than fFXIa-V516, supporting a conformational alteration of the protease active site. The rate of FIX activation by fFXIa-M516 was reduced >3-fold compared with fFXIa-V516. The common missense variant FXI-V516M causes a cross-reactive material positive FXI deficiency in MCCs that is associated with mild-moderate bleeding tendencies. Given the prevalence of the variant in MCCs, genotyping is recommended prior to invasive procedures or breeding.
Hemophilia B is an x-linked recessive hereditary coagulopathy that has been reported in various species. We describe a male Newfoundland–Parti Standard Poodle hybrid puppy and its family with hemophilia B from clinical manifestations to the molecular genetic defect. The index case presented for dyspnea was found to have a mediastinal hematoma, while surgical removal and transfusion support brought some relief, progressive hematoma formations led to humane euthanasia. Sequencing the F9 exons revealed a single nucleotide insertion resulting in a frameshift in the last exon (NM_001003323.2:c.821_822insA), predicted to result in a premature stop codon (NP_001003323.1:p.Asn274LysfsTer23) with a loss of 178 of 459 amino acids. The unexpected high residual plasma factor IX activity (3% to 11% of control) was likely erroneous, but no further studies were performed. Both the purebred Newfoundland dam and her sister were heterozygous for the insertion. Five additional male offspring developed severe hemorrhage and were hemizygous for the F9 variant and/or had a prolonged aPTT. In contrast, other male littermates had normal aPTTs and no evidence of bleeding. While they are related to a common Newfoundland granddam, the prevalence of the pathogenic variant in the Newfoundland breed is currently unknown. These clinical to molecular genetic studies illustrate that precision medicine is achievable in clinical companion animal practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.