Marine spatial planning (MSP) requires spatially explicit environmental risk assessment (ERA) frameworks with quantitative or probabilistic measures of risk, enabling an evaluation of spatial management scenarios. ERAs comprise the steps of risk identification, risk analysis, and risk evaluation. A review of ERAs in in the context of spatial management revealed a synonymous use of the concepts of risk, vulnerability and impact, a need to account for uncertainty and a lack of a clear link between risk analysis and risk evaluation. In a case study, we addressed some of the identified gaps and predicted the risk of changing the current state of benthic disturbance by bottom trawling due to future MSP measures in the German EEZ of the North Sea. We used a quantitative, dynamic, and spatially explicit approach where we combined a Bayesian belief network with GIS to showcase the steps of risk characterization, risk analysis, and risk evaluation. We distinguished 10 benthic communities and 6 international fishing fleets. The risk analysis produced spatially explicit estimates of benthic disturbance, which was computed as a ratio between relative local mortality by benthic trawling and the recovery potential after a trawl event. Results showed great differences in spatial patterns of benthic disturbance when accounting for different environmental impacts of the respective fleets. To illustrate a risk evaluation process, we simulated a spatial shift of the international effort of two beam trawl fleets, which are affected the most by future offshore wind development. The Bayesian belief network (BN) model was able to predict the proportion of the area where benthic disturbance likely increases. In conclusion, MSP processes should embed ERA frameworks which allow for the integration of multiple risk assessments and the quantification of related risks as well as uncertainties at a common spatial scale.
Human impacts can induce ecosystems to cross tipping points and hence unexpected and sudden changes in ecosystem services that are difficult or impossible to reverse. The world´s oceans suffer from cumulative anthropogenic pressures like overexploitation and climate change and are especially vulnerable to such regime shifts. Yet an outstanding question is whether regime changes in marine ecosystems are irreversible. Here we first review the evidence for regime shifts in the North Sea ecosystem, one of the heaviest impacted and best studied marine ecosystems in the world. We then used catastrophe theory to show that fishing and warming have caused a previously undetected and potentially irreversible regime shift. Our study emphasizes the combined effects of local and global human impacts in driving significant ecosystem shifts and suggests that adaptation is likely the central avenue forward for maintaining services in the face of global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.