Stream processing applications have recently gained significant attention in the networking and database community. At the core of these applications is a stream processing engine that performs resource allocation and management to support continuous tracking of queries over collections of physically-distributed and rapidly-updating data streams. While numerous stream processing systems exist, there has been little work on understanding the performance characteristics of these applications in a distributed setup. In this paper, we examine the performance bottlenecks of streaming data applications, in particular the Linear Road stream data management benchmark, in achieving good performance in large-scale distributed environments, using the Stream Processing Core (SPC), a stream processing middleware we have developed.First, we present the design and implementation of the Linear Road benchmark on the SPC middleware. SPC has been designed to scale to tens of thousands of processing nodes, while supporting concurrent applications and multiple simultaneous queries. Second, we identify the main performance bottlenecks in the Linear Road application in achieving scalability and low query response latency. Our results show that data locality, buffer capacity, physical allocation of processing elements to infrastructure nodes, and packaging for transporting streamed data are important factors in achieving good application performance. Though we evaluate our system primarily for the Linear Road application, we believe it also provides useful insights into the overall system behavior for supporting other distributed and large-scale continuous streaming data applications. Finally, we examine how SPC can be used and tuned to enable a very efficient implementation of the Linear Road application in a distributed environment.
We describe an approach to elastically scale the performance of a data analytics operator that is part of a streaming application. Our techniques focus on dynamically adjusting the amount of computation an operator can carry out in response to changes in incoming workload and the availability of processing cycles. We show that our elastic approach is beneficial in light of the dynamic aspects of streaming workloads and stream processing environments. Addressing another recent trend, we show the importance of our approach as a means to providing computational elasticity in multicore processor-based environments such that operators can automatically find their best operating point. Finally, we present experiments driven by synthetic workloads, showing the space where the optimizing efforts are most beneficial and a radioastronomy imaging application, where we observe substantial improvements in its performance-critical section.
The IBM Streams Processing Language (SPL) is the programming language for IBM InfoSphere A Streams, a platform for analyzing Big Data in motion. By BBig Data in motion,[ we mean continuous data streams at high data-transfer rates. InfoSphere Streams processes such data with both high throughput and short response times. To meet these performance demands, it deploys each application on a cluster of commodity servers. SPL abstracts away the complexity of the distributed system, instead exposing a simple graph-of-operators view to the user. SPL has several innovations relative to prior streaming languages. For performance and code reuse, SPL provides a code-generation interface to C++ and Java A. To facilitate writing well-structured and concise applications, SPL provides higher-order composite operators that modularize stream sub-graphs. Finally, to enable static checking while exposing optimization opportunities, SPL provides a strong type system and user-defined operator models. This paper provides a language overview, describes the implementation including optimizations such as fusion, and explains the rationale behind the language design.
Abstract. In this paper, we describe an optimization scheme for fusing compile-time operators into reasonably-sized run-time software units called processing elements (PEs). Such PEs are the basic deployable units in System S, a highly scalable distributed stream processing middleware system. Finding a high quality fusion significantly benefits the performance of streaming jobs. In order to maximize throughput, our solution approach attempts to minimize the processing cost associated with inter-PE stream traffic while simultaneously balancing load across the processing hosts. Our algorithm computes a hierarchical partitioning of the operator graph based on a minimum-ratio cut subroutine. We also incorporate several fusion constraints in order to support real-world System S jobs. We experimentally compare our algorithm with several other reasonable alternative schemes, highlighting the effectiveness of our approach.
Stream processing is a novel distributed computing paradigm that supports the gathering, processing and analysis of high-volume, heterogeneous, continuous data streams, to extract insights and actionable results in real time. This comprehensive, hands-on guide combining the fundamental building blocks and emerging research in stream processing is ideal for application designers, system builders, analytic developers, as well as students and researchers in the field. This book introduces the key components of the stream computing paradigm, including the distributed system infrastructure, the programming model, design patterns and streaming analytics. The explanation of the underlying theoretical principles, illustrative examples and implementations using the IBM InfoSphere Streams SPL language and real-world case studies provide students and practitioners with a comprehensive understanding of such applications and the middleware that supports them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.