Hancornia speciosa Gomes is a tree native to Brazil and has therapeutic potential for several diseases. Ethnopharmacological surveys have reported that the plant is used as a hypoglycemic agent and to lose weight. This study aimed to evaluate the effects of the aqueous extract from H. speciosa latex (LxHs) in a zebrafish model of diabetes. The extract was evaluated through high-performance thin-layer chromatography (HTPLC), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FT-IR). We then tested treatments with LxHs (500, 1000, and 1500 mg/kg) by assessing blood glucose levels in alloxan-induced diabetic animals, and metformin was used as a control. The toxicity was evaluated through histopathology of the pancreas and biochemical assessment of serum levels of AST, ALT, creatinine, and urea. The extract was also assessed for acute toxicity through several parameters in embryos and adult animals. Finally, we performed in silico analysis through the SEA server and docking using the software GOLD. The phytochemical study showed the compounds cornoside, dihydrocornoide, and 1-O-methyl-myoinositol (bornesitol). The treatment with all doses of LxHs significantly decreased alloxan-induced hyperglycemia without any significant histological or biochemical abnormalities. No significant frequency of teratogenesis was observed in the embryos exposed to the extract, and no significant behavioral changes or deaths were observed in adult animals. In silico, the results showed a potential interaction between inositol and enzymes involved in carbohydrates’ metabolism. Overall, the results show a hypoglycemic activity of the extract in vivo, with no apparent toxicity. The computational studies suggest this could be at least partially due to the presence of bornesitol, since inositols can interact with carbohydrates’ enzymes.
Background: The chemical dependency caused by recreational drug abuse is highly detrimental to humans and has direct implications for society. Cannabis sativa is still at the top of the ranking of most used drugs in the world, and its major chemical component is Δ9-THC. This molecule is the main cause of addiction in chronic users, and its action is measured by the CB1 receptor present in the CNS. So far there is no approved drug for the treatment of abstinence in C. sativa. Objective: In this sense, the objective of this research is to propose analogues of the Stemphol (2-methyl-5-pentylbenzene-1,3-diol) molecule that can serve as treatment for withdrawal crises in C. sativa addicts, initially through in silico methods. Methods: 28 structural modifications were carried out in the molecule stemphol. These were subjected to in silico predictions of pharmacokinetics, toxicology, pharmacological activity, synthetic viability and prediction of drug-receptor interaction through molecular docking. For this, the software and web servers PreADMET, DEREK 2.1, PASS, SEA, SYLVIA 2.4 and GOLD were used. Results: 22 analogues demonstrated good pharmacokinetic results and 16 analogues gave no warning of hepatotoxicity, mutagenicity, nephropathies and carcinogenicity in mammals. Biological activity predictions were performed on the PASS server, resulting in 28 analogues exhibiting adenylate cyclase inhibition and/or MAP kinase stimulating activity; in SEA, the performance of the CB1 receptor was analyzed, resulting in 20 analogues with action on CB1 receptors in humans. The selected analogues 1, 4, 16, 17, 19, 24, 25 and 26 were submitted to synthetic accessibility prediction in the SYLVIA software because they presented better results in their pharmacokinetic, toxicological and predictive properties. Conclusion: Of these, the analogues 17 and 25 obtained a very satisfactory result in the interaction with the CB1 receptor through the molecular docking method and can be considered great proposals for future in vitro and in vivo studies, with the ability to further elucidate their actions. Keywords: Chemical dependency, Cannabis sativa, Withdrawal Syndrome.
Search for new pharmacological alternatives for obesity is based on the design and development of compounds that can aid in weight loss so that they can be used safely and effectively over a long period while maintaining their function. The endocannabinoid system is related to obesity by increasing orexigenic signals and reducing satiety signals. Cannabis sativa is a medicinal plant of polypharmaceutical potential that has been widely studied for various medicinal purposes. The in silico evaluation of their natural cannabinoids (also called phytocannabinoids) for anti-obesity purpose stems from the existence of synthetic cannabinoid compounds that have already presented this result, but which did not guarantee patient safety. In order to find new molecules from C. sativa phytocannabinoids, with the potential to interact with the pharmacological target cannabinoid receptor 1, a pharmacophore-based virtual screening was performed, including the evaluation of physicochemical, pharmacokinetic, toxicological predictions and molecular docking. The results obtained from the ZINC12 database pointed to Zinc 69 (ZINC33053402) and Zinc 70 (ZINC19084698) molecules as promising anti-obesity agents. Molecular Dynamics (MD) studies discloses that both complexes were stable by analyzing the RMSD (Root Mean Square Deviation) values, and the binding free energy values demonstrate that the selected structures can interact and inhibit their catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.