This article coupled the Recursive Least Squares Method with Forgetting Factor (RLS-FF) to a Model Reference Adaptive Control (MRAC) system and described an analysis for a second-order plant with variable and unknown parameters. In the industrial context, manufacturing processes demand to be controlled, however there are variant and even unknown parameters, a consequence of non-modeled dynamics. Thus, an algorithm capable of estimating the controller gains from the RLS-FF was proposed. Next, the MRAC simulation was carried out and the numerical results were obtained, regarding the target parameters of the control system. Through mathematical description and computational simulation, the results were promising, such as the convergence of controller gains. Therefore, this article aims to contribute with students and professionals in the field of Control and Automation, who are looking for models of adaptive control systems, in order to check, compare and implement new embedded technologies.
Helicopters are high cost and safety systems with a strong control system designed to maintain the helicopter performance, stability, and ight qualities. However, there exist faults that negatively a_ect the helicopter desirable behaviour; therefore, fault detection and isolation must be done to early detect, isolate and eliminate these faults. Because of helicopters are strongly nonlinear systems, and are a_ected by uncertainties and by external disturbances as wind bursts, robust residuals generation is required to correctly detect and isolate faults in the helicopter actuators and sensors. This paper leads with the robust fault detection and isolation of a six-degree of freedom helicopter benchmark using the disturbance decoupling method and the unknown input observer robust residuals generator. A generalized observer scheme is employed for fault isolation purposes.
Editora Direitos para esta edição cedidos à Atena Editora pelos autores. Open access publication by Atena Editora Todo o conteúdo deste livro está licenciado sob uma Licença de Atribuição Creative Commons. Atribuição-Não-Comercial-NãoDerivativos 4.0 Internacional (CC BY-NC-ND 4.0). O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores, inclusive não representam necessariamente a posição oficial da Atena Editora. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterála de nenhuma forma ou utilizá-la para fins comerciais.Todos os manuscritos foram previamente submetidos à avaliação cega pelos pares, membros do Conselho Editorial desta Editora, tendo sido aprovados para a publicação com base em critérios de neutralidade e imparcialidade acadêmica.A Atena Editora é comprometida em garantir a integridade editorial em todas as etapas do processo de publicação, evitando plágio, dados ou resultados fraudulentos e impedindo que interesses financeiros comprometam os padrões éticos da publicação. Situações suspeitas de má conduta científica serão investigadas sob o mais alto padrão de rigor acadêmico e ético.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.