Large‐scale bioenergy demand has triggered new approaches to straw management in Brazilian sugarcane fields. With the progressive shift from a burned to a nonburned harvest system, most of the straw presently retained on the soil surface has become economically viable feedstock for bioenergy production. The trade‐offs between the need to preserve soil quality and produce more bioenergy have been the subject of intense discussion. This study presents a synthesis of available information on the magnitude of the main impacts of straw removal from sugarcane fields for bioenergy production and therefore represents an easily available resource to guide management decisions on the recommended amount of straw to be maintained on the field to take advantage of the agronomic, environmental, and industrial benefits. Crop residues remaining on sugarcane fields provide numerous ecosystem services including nutrient recycling, soil biodiversity, water storage, carbon accumulation, control of soil erosion, and weed infestation. Furthermore, several studies reported higher sugarcane production under straw retention on the field, while few suggest that straw may jeopardize biomass production in cold regions and under some specific soil conditions. Pest control is among the parameters favored by straw removal, while N2O emissions are increased only if straw is associated with the application of N fertilizer and vinasse. An appropriate recommendation, which is clearly site specific, should be based on a minimum mass of straw on the field to provide those benefits. Overall, this review indicates that most of the agronomic and environmental benefits are achieved when at least 7 Mg ha−1 of dry straw is maintained on the soil surface. However, modeling efforts are of paramount importance to assess the magnitude and rates of straw removal considering the several indicators involved in this complex equation, so that an accurate straw recovery rate could be provided to producers and industry toward greater sustainability.
Land area devoted to sugarcane (Saccharum spp.) production in Brazil has increased from 2 million to 10 million ha over the past four decades. Studies have shown that, from an environmental perspective, the transformation of nitrogen (N) fertilizers into N 2 O gases can offset the advantages gained by replacing fossil fuels with biofuels. Our objectives here were to review recent developments in N management for sugarcane-biofuel production and assess estimates of N use efficiency (NUE) and N losses based on future scenarios, as well as for life-cycle assessments of bioenergy production. Approximately 60 % of N-based fertilizer applied to sugarcane fields in Brazil is recovered by plants and soils, whereas N losses to leaching and N 2 O emissions can average 5.6 and 1.84 % of the total applied N, respectively. Maintenance of trash, rotation with N-fixing legume species, and optimization of byproducts usage have potential for reducing the N requirements of sugarcane cultivation in Brazil. Moreover, the development of sugarcane genotypes with higher NUEs, along with management systems that consider soil capacity of mineralization, is required for improving the NUE of sugarcane. Strategies to maintain N as NH 4 + in sugarcane-cropped soils also have the potential to reduce N losses and enhance NUE. The development of secondgeneration biofuels is important for increasing biofuel production while simultaneously maintaining N rates and improving NUE, and sugarcane systems in Brazil show potential for sustainable biofuel production with low N rates and limited N 2 O losses. Reducing N rates in sugarcane fields is thus necessary for improving sugarcane-based biofuel production and reducing its environmental impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.