The synchronization of two pendulum clocks hanging from a wall was first observed by Huygens during the XVII century. This type of synchronization is observed in other areas, and is fundamentally different from the problem of two clocks hanging from a moveable base. We present a model explaining the phase opposition synchronization of two pendulum clocks in those conditions. The predicted behaviour is observed experimentally, validating the model.
Our main objective is to study a Ricker-type competition model of two species. We give a complete analysis of stability and bifurcation and determine the centre manifolds, as well as stable and unstable manifolds. It is shown that the autonomous Ricker competition model exhibits subcritical bifurcation, bubbles, perioddoubling bifurcation, but no Neimark-Sacker bifurcations. We exhibit the region in the parameter space where the competition exclusion principle applies.
A new class of maps called unimodal Allee maps are introduced. Such maps arise in the study of population dynamics in which the population goes extinct if its size falls below a threshold value. A unimodal Allee map is thus a unimodal map with tree fixed points, a zero fixed point, a small positive fixed point, called threshold point, and a bigger positive fixed point, called the carrying capacity. In this paper the properties and stability of the three fixed points are studied in the setting of nonautonomous periodic dynamical systems or difference equations. Finally we investigate the bifurcation of periodic systems/difference equations when the system consists of two unimodal Allee maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.