Background Sugarcane is capable to store large amounts of sucrose in the culm at maturity hence it became a major source of sucrose for the food and the renewable energy industries. Sucrose, the main disaccharide produced by photosynthesis, is mainly stored in the vacuole of the cells of non-photosynthetic tissues. Two pathways are known to release free sucrose in plant cells, one is de novo synthesis dependent on sucrose phosphate synthase (SPS) and sucrose phosphate phosphatase (S6PP) while the other is regulatory and dependent on sucrose synthase (SuSy) activity. The molecular understanding of genes that give rise to the expression of the enzyme sucrose phosphate phosphatase, responsible for the release of sucrose in the last synthetic step lag behind the regulatory SuSy gene. Results Sugarcane genome sequencing effort disclosed the existence of a tandem duplication and the present work further support that both S6PP.1 and S6PP_2D isoforms are actively transcribed in young sugarcane plants but significantly less at maturity. Two commercial hybrids (SP80–3280 and R570) and both Saccharum spontaneum (IN84–58) and S.officinarum (BADILLA) exhibit transcriptional activity at three-month-old plants of the tandem S6PP_2D in leaves, culm, meristem and root system with a cultivar-specific distribution. Moreover, this tandem duplication is shared with other grasses and is ancestral in the group. Conclusion Detection of a new isoform of S6PP resulting from the translation of 14 exon-containing transcript (S6PP_2D) will contribute to the knowledge of sucrose metabolism in plants. In addition, expression varies along plant development and between sugarcane cultivars and parental species.
Background: Transposable elements (TEs) are major components of plant genomes. Despite being regarded as junk DNA at first, TEs play important roles for the organisms they are found in. The most obvious and easily recognizable effects caused by TEs result from their mobility, which can disrupt coding sequences or promoter regions. However, with the recent advances in transcriptomics, it is becoming increasingly evident that TEs can act as an additional layer of gene expression regulation through a number of processes, which can involve production of non-coding RNAs. Here, we describe how Tnt1, a stress-responsive LTR-retrotransposon, interferes with gene expression and modulate a number of developmental aspects in tobacco. Results: Through an RNAi approach, we generated tobacco (HP) lines knocked-down for Tnt1 expression. Quantitative RT-PCR experiments confirm that Tnt1 is downregulated in HP lines after ethylene exposure. A RNA-seq experiment was performed and through two independent bioinformatic approaches (with different stringencies) we found 932 and 97 differentially expressed genes in HP lines. A number of phenotypes were observed in such lines, namely lesion mimicry in leaves, underdevelopment of the root system, overproduction of root hairs and early loss of seed viability. Folding prediction of part of the Tnt1 mRNA reveals putative stem-loop secondary structures containing transcriptional regulation sequences, suggesting it could be a source of small RNAs. We also propose a model to explain the Tnt1 expression in both homeostatic and stress conditions, and how it could interact with stress-responsive genes. Conclusions: Our results are consistent that interferences with Tnt1 transcript levels correlate with transcriptomic and phenotypic changes, suggesting a functional role for this element during plant development and stress response.
Frente ao intenso uso de recursos naturais, a educação ambiental possui importante papel na promoção de mudanças na forma como a sociedade enxerga as questões ambientais. Nesse contexto, a universidade possui papel determinante na promoção de ações, que levem a sociedade o conhecimento sobre estes recursos e a necessidade do seu uso sustentável, atrelado a interesses pessoais e coletivos. Este trabalho teve como objetivo relatar a experiência de três edições do evento “Plante essa Ideia”, alusivo ao Dia da Árvore, nos quais houve a doação de mudas de espécies florestais e frutíferas nativas, distribuição de cartilhas educativas para a comunidade, e visitas a uma nascente recuperada em uma área de preservação permanente urbana. Ao longo das edições, o evento realizado em diferentes pontos estratégicos da cidade, resultou na doação de 3500 mudas, arrecadadas com o apoio de parceiros. A ação culminou na troca de experiências entre petianos e a comunidade, contribuindo para o desenvolvimento pessoal e profissional dos acadêmicos, promovendo ainda a visibilidade da universidade, do curso de Engenharia Florestal e do Programa de Educação Tutorial - Engenharia Florestal (PET-EF).
De novo synthesis of thiamine (vitamin B1) in plants depends on the action of thiamine thiazole synthase, which synthesizes the thiazole ring, and is encoded by the THI1 gene. Here, we investigated the evolution and diversity of THI1 in Poaceae, where C4 and C3 photosynthetic plants co-evolved. An ancestral duplication of THI1 is observed in Panicoideae that remains in many modern monocots, including sugarcane. In addition to the two sugarcane copies (ScTHI1-1 and ScTHI1-2), we identified ScTHI1-2 alleles showing differences in their sequence, indicating divergence between ScTHI1-2a and ScTHI1-2b. Such variations are observed only in the Saccharum complex, corroborating the phylogeny. At least five THI1 genomic environments were found in Poaceae, two in sugarcane, M. sinensis, and S. bicolor. The THI1 promoter in Poaceae is highly conserved at 300 bp upstream of the start codon ATG and has cis-regulatory elements that putatively bind to transcription factors associated with development, growth, development and biological rhythms. An experiment set to compare gene expression levels in different tissues across the sugarcane R570 life cycle showed that ScTHI1-1 was expressed mainly in leaves regardless of age. Furthermore, ScTHI1 displayed relatively high expression levels in meristem and culm, which varied with the plant age. Finally, yeast complementation studies with THI4-defective strain demonstrate that only ScTHI1-1 and ScTHI1-2b isoforms can partially restore thiamine auxotrophy, albeit at a low frequency. Taken together, the present work supports the existence of multiple origins of THI1 harboring genomic regions in Poaceae with predicted functional redundancy. In addition, it questions the contribution of the levels of the thiazole ring in C4 photosynthetic plant tissues or potentially the relevance of the THI1 protein activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.