BackgroundEnvenoming by coral snakes (Elapidae: Micrurus), although not abundant, represent a serious health threat in the Americas, especially because antivenoms are scarce. The development of adequate amounts of antielapidic serum for the treatment of accidents caused by snakes like Micrurus corallinus is a challenging task due to characteristics such as low venom yield, fossorial habit, relatively small sizes and ophiophagous diet. These features make it difficult to capture and keep these snakes in captivity for venom collection. Furthermore, there are reports of antivenom scarcity in USA, leading to an increase in morbidity and mortality, with patients needing to be intubated and ventilated while the toxin wears off. The development of an alternative method for the production of an antielapidic serum, with no need for snake collection and maintenance in captivity, would be a plausible solution for the antielapidic serum shortage.Methods and FindingsIn this work we describe the mapping, by the SPOT-synthesis technique, of potential B-cell epitopes from five putative toxins from M. corallinus, which were used to design two multiepitope DNA strings for the genetic immunisation of female BALB/c mice. Results demonstrate that sera obtained from animals that were genetically immunised with these multiepitope constructs, followed by booster doses of recombinant proteins lead to a 60% survival in a lethal dose neutralisation assay.ConclusionHere we describe that the genetic immunisation with a synthetic multiepitope gene followed by booster doses with recombinant protein is a promising approach to develop an alternative antielapidic serum against M. corallinus venom without the need of collection and the very challenging maintenance of these snakes in captivity.
The main goal of this work was to develop a strategy to identify B-cell epitopes on four different three finger toxins (3FTX) and one phospholipase A2 (PLA2) from Micrurus corallinus snake venom. 3FTx and PLA2 are highly abundant components in Elapidic venoms and are the major responsibles for the toxicity observed in envenomation by coral snakes. Overlapping peptides from the sequence of each toxin were prepared by SPOT method and three different anti-elapidic sera were used to map the epitopes. After immunogenicity analysis of the spot-reactive peptides by EPITOPIA, a computational method, nine sequences from the five toxins were chemically synthesized and antigenically and immunogenically characterized. All the peptides were used together as immunogens in rabbits, delivered with Freund's adjuvant for a first cycle of immunization and Montanide in the second. A good antibody response against individual synthetic peptides and M. corallinus venom was achieved. Anti-peptide IgGs were also cross-reactive against Micrurus frontalis and Micrurus lemniscatus crude venoms. In addition, anti-peptide IgGs inhibits the lethal and phospholipasic activities of M. corallinus crude venom. Our results provide a rational basis to the identification of neutralizing epitopes on coral snake toxins and show that their corresponding synthetic peptides could improve the generation of immuno-therapeutics. The use of synthetic peptide for immunization is a reasonable approach, since it enables poly-specificity, low risk of toxic effects and large scale production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.