Este trabalho propõe uma análise desagregada de escolhas de destinos para viagens intermunicipais, por meio da aplicação de algoritmos de Aprendizagem de Máquinas - AM (Classification And Regression Tree - CART e Algoritmos Genéticos - AG). Foi utilizada uma Pesquisa OD, realizada pelo Centro de Estudos de Transportes e Meio Ambiente (UFBA), em 2012/2013 em onze municípios do estado da Bahia. Foi realizada a calibração de um Modelo Logit Multinomial a partir do algoritmo AG, trazendo a vantagem de associação das escolhas dos destinos a valores de coeficientes estimados das funções utilidade aleatórias, sem os problemas relativos à calibração dos modelos logit tradicionais, tais como erros identicamente distribuídos, seguindo a distribuição de Gumbel. O desempenho de cada algoritmo de AM foi comparado à abordagem tradicional (modelo gravitacional). Os resultados evidenciaram que os algoritmos de AM apresentaram melhores previsões para a escolha de destinos, sendo que o AG apresentou vantagens na obtenção dos parâmetros associados às variáveis independentes. A principal conclusão é que tais algoritmos podem ser aplicados na modelagem de distribuição de viagens, incorporando o efeito das variáveis desagregadas, sem suposições matemáticas rigorosas contidas no ajuste de modelos tradicionais desagregados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.