Fig. 1. Hair is submerged in water and then rapidly flipped, resulting in wet locks and dripping.The diverse interactions between hair and liquid are complex and span multiple length scales, yet are central to the appearance of humans and animals in many situations. We therefore propose a novel multi-component simulation framework that treats many of the key physical mechanisms governing the dynamics of wet hair. The foundations of our approach are a discrete rod model for hair and a particle-in-cell model for fluids. To treat the thin layer of liquid that clings to the hair, we augment each hair strand with a height field representation. Our contribution is to develop the necessary physical and numerical models to evolve this new system and the interactions among its components. We develop a new reduced-dimensional liquid model to solve the motion of the liquid along the length of each hair, while accounting for its moving reference frame and influence on the hair dynamics. We derive a faithful model for surface tension-induced cohesion effects between adjacent hairs, based on the geometry of the liquid bridges that connect them. We adopt an empirically-validated drag model to treat the effects of coarse-scale interactions between hair and surrounding fluid, and propose new volume-conserving dripping and absorption strategies to transfer liquid between the reduced and particle-in-cell liquid representations. The synthesis of these techniques yields an effective wet hair simulator, which we use to animate hair flipping, an animal shaking itself dry, a spinning car wash roller brush dunked in liquid, and intricate hair coalescence effects, among several additional scenarios.
With the advance of personal and customized fabrication techniques, the capability to embed information in physical objects becomes evermore crucial. We present LayerCode , a tagging scheme that embeds a carefully designed barcode pattern in 3D printed objects as a deliberate byproduct of the 3D printing process. The LayerCode concept is inspired by the structural resemblance between the parallel black and white bars of the standard barcode and the universal layer-by-layer approach of 3D printing. We introduce an encoding algorithm that enables the 3D printing layers to carry information without altering the object geometry. We also introduce a decoding algorithm that reads the LayerCode tag of a physical object by just taking a photo. The physical deployment of LayerCode tags is realized on various types of 3D printers, including Fused Deposition Modeling printers as well as Stereolithography based printers. Each offers its own advantages and tradeoffs. We show that LayerCode tags can work on complex, nontrivial shapes, on which all previous tagging mechanisms may fail. To evaluate LayerCode thoroughly, we further stress test it with a large dataset of complex shapes using virtual rendering. Among 4,835 tested shapes, we successfully encode and decode on more than 99% of the shapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.