Maize doubled haploid (DH) lines are usually created in vivo, through crosses with maternal haploid inducers. These inducers have the inherent ability of generating seeds with haploid embryos when used to pollinate other genotypes. The resulting haploid plants are treated with a doubling agent and self-pollinated, producing completely homozygous seeds. This rapid method of inbred line production reduces the length of breeding cycles and, consequently, increases genetic gain. Such advantages explain the wide adoption of this technique by large, well-established maize breeding programs. However, a slower rate of adoption was observed in medium to small-scale breeding programs. The high price and/or lack of environmental adaptation of inducers available for licensing, or the poor performance of those free of cost, might explain why smaller operations did not take full advantage of this technique. The lack of adapted inducers is especially felt in tropical countries, where inducer breeding efforts are more recent. Therefore, defining optimal breeding approaches for inducer development could benefit many breeding programs which are in the process of adopting the DH technique. In this manuscript, we review traits important to maize maternal haploid inducers, explain their genetic basis, listing known genes and quantitative trait loci (QTL), and discuss different breeding approaches for inducer development. The performance of haploid inducers has an important impact on the cost of DH line production.
Genomic prediction (GP) might be an efficient way to improve haploid induction rate (HIR) and to reduce the laborious and time-consuming task of phenotypic selection for HIR in maize (Zea mays L.). In this study, we evaluated GP accuracies for HIR and other agronomic traits of importance to inducers by independent and cross-validation. We propose the use of GP for cross prediction and parental selection in the development of new inducer breeding populations. A panel of 159 inducers from Iowa State University (ISU set) was genotyped and phenotyped for HIR and several agronomic traits. The data of an independent set of 53 inducers evaluated by the University of Hohenheim (UOH set) was used for independent validation. The HIR ranged from 0.61 to 20.74% and exhibited high heritability (0.90). High cross-validation prediction accuracy was observed for HIR (r = 0.82), whereas for other traits it ranged from 0.36 (self-induction rate) to 0.74 (days to anthesis). Prediction accuracies across different sets were higher when the larger panel (ISU set) was used as a training population (r = 0.54). The average HIR of the 12,561 superior predicted progenies (μ SP ) ranged from 1.00-18.36% and was closely related to the corresponding midparent genomic estimated breeding value (GEBV). A predicted genetic variance (V G ) of reduced magnitude was observed in the twenty crosses with highest midparent GEBV or μ SP for HIR. Our results indicate that although GP is a useful tool for parental selection, decisions about which cross combinations should be pursued need to be based on optimal trade-offs between maximizing both μ SP and V G .This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Doubled haploid technology is a feasible, fast, and cost-efficient way of producing completely homozygous lines in maize. Many factors contribute to the success of this system including the haploid induction rate (HIR) of inducer lines, the inducibility of donor background, and environmental conditions. Sixteen inducer lines were tested on eight different genetic backgrounds of five categories in different environments for the HIR to determine possible interaction specificity. The HIR was assessed using the R1-nj phenotype and corrected using the red root marker or using a gold-standard test that uses plant traits. RWS and Mo-17-derived inducers showed higher average induction rates and the commercial dent hybrid background showed higher inducibility. In contrast, sweet corn and flint backgrounds had a relatively lower inducibility, while non-stiff stalk and stiff stalk backgrounds showed intermediate inducibility. For the poor-performing donors (sweet corn and flint), there was no difference in the HIR among the inducers. Anthocyanin inhibitor genes in such donors were assumed to have increased the misclassification rate in the F1 fraction and, hence, result in a lower HIR.
The effectiveness of haploid induction systems is regarded not only for high haploid induction rate (HIR) but also resource savings. Isolation fields are proposed for hybrid induction. However, efficient haploid production depends on inducer traits such as high HIR, abundant pollen production, and tall plants. Seven hybrid inducers and their respective parents were evaluated over three years for HIR, seeds set in cross-pollinations, plant and ear height, tassel size, and tassel branching. Mid-parent heterosis was estimated to quantify how much inducer traits improve in hybrids in comparison to their parents. Heterosis benefits hybrid inducers for plant height, ear height, and tassel size. Two hybrid inducers, BH201/LH82-Ped126 and BH201/LH82-Ped128, are promising for haploid induction in isolation fields. Hybrid inducers offer convenience and resource-effectiveness for haploid induction by means of improving plant vigor without compromising HIR.
I dedicate this thesis to my parents, Eliane and Renato, and to my sister, Marina, whose encouragement and support were fundamental to the completion of this work.Your love and example constantly motivate me to become a better person.iii TABLE OF CONTENTS .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.