Buildings with a high window-to-wall ratio tend to suffer from excessive solar gains/losses that usually result in high energy demand and discomfort for occupants. Solar control films (SCFs) are a passive solution with the potential to increase the performance of new or refurbished glazing they are applied to. This paper presents a comprehensive literature review of the performance of SCFs applied to glazing systems of buildings. Research studies with experimental, analytical and computer simulation approaches were gathered and analyzed, identifying glass and film systems, climatic conditions, energy savings and comfort performance. The research approaches and main findings of existing research studies were compared and discussed. The presence of SCFs significantly reduced indoor solar radiation and illuminance levels, particularly with reflective films applied to south-oriented glazing (northern hemisphere). Glazing systems with SCFs were reported to promote cooling energy savings compared with clear glazing in hot climates. Few studies have explored the visual and thermal comfort performance of SCFs, concluding that these films promote thermal comfort, and reduce excessive illuminance and potential glare. Furthermore, this paper helps to highlight areas of guidance for future studies on the topic.
The global increase in energy needs and environmental awareness for a more efficient energy use have boosted building rehabilitation to decrease energy consumption. The installation of solar control films (SCFs) in buildings with large glazing façades makes it possible to reduce excessive solar gains through the glazing. The main purpose of the work is to assess, with field experimental data, the thermal and luminous performances of double-glazing units with SCFs installed in office rooms, in Lisbon. An experimental campaign was carried out simultaneously in three adjacent offices: one with a highly reflective SCF (external installation), one with a reflective SCF (internal installation) and one without an SCF. The exterior SCF showed the best thermal performance with reductions in the peak indoor air temperature of up to 6.9 and 2.3 °C during the representative days of the heating and cooling periods, respectively, increasing thermal comfort mainly during the cooling period. The interior SCF had a poorer thermal performance since it contributed to solar radiation absorption that is then emitted as heat into the indoor environment, increasing the greenhouse effect of the office. The presence of SCFs reduced the indoor illuminance levels, having a positive impact on thermal comfort and glare reduction in the cooling period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.