APOBEC3 enzymes form part of the innate immune system by deaminating cytosine to uracil in single-stranded DNA (ssDNA) and thereby preventing the spread of pathogenic genetic information. However, APOBEC mutagenesis is also exploited by viruses and cancer cells to increase rates of evolution, escape adaptive immune responses, and resist drugs. This raises the possibility of APOBEC3 inhibition as a strategy for augmenting existing antiviral and anticancer therapies. Here we show that, upon incorporation into short ssDNAs, the cytidine nucleoside analogue 2′-deoxyzebularine (dZ) becomes capable of inhibiting the catalytic activity of selected APOBEC variants derived from APOBEC3A, APOBEC3B, and APOBEC3G, supporting a mechanism in which ssDNA delivers dZ to the active site. Multiple experimental approaches, including isothermal titration calorimetry, fluorescence polarization, protein thermal shift, and nuclear magnetic resonance spectroscopy assays, demonstrate nanomolar dissociation constants and low micromolar inhibition constants. These dZ-containing ssDNAs constitute the first substrate-like APOBEC3 inhibitors and, together, comprise a platform for developing nucleic acid-based inhibitors with cellular activity.
The APOBEC3 (APOBEC3A‐H) enzyme family is part of the human innate immune system that restricts pathogens by scrambling pathogenic single‐stranded (ss) DNA by deamination of cytosines to produce uracil residues. However, APOBEC3‐mediated mutagenesis of viral and cancer DNA promotes its evolution, thus enabling disease progression and the development of drug resistance. Therefore, APOBEC3 inhibition offers a new strategy to complement existing antiviral and anticancer therapies by making such therapies effective for longer periods of time, thereby preventing the emergence of drug resistance. Here, we have synthesised 2′‐deoxynucleoside forms of several known inhibitors of cytidine deaminase (CDA), incorporated them into oligodeoxynucleotides (oligos) in place of 2′‐deoxycytidine in the preferred substrates of APOBEC3A, APOBEC3B, and APOBEC3G, and evaluated their inhibitory potential against these enzymes. An oligo containing a 5‐fluoro‐2′‐deoxyzebularine (5FdZ) motif exhibited an inhibition constant against APOBEC3B 3.5 times better than that of the comparable 2′‐deoxyzebularine‐containing (dZ‐containing) oligo. A similar inhibition trend was observed for wild‐type APOBEC3A. In contrast, use of the 5FdZ motif in an oligo designed for APOBEC3G inhibition resulted in an inhibitor that was less potent than the dZ‐containing oligo both in the case of APOBEC3GCTD and in that of full‐length wild‐type APOBEC3G.
α-Methylene−γ-lactones are present in ∼3% of known natural products, and compounds comprising this motif display a range of biological activities. However, this reactive lactone limits informed structure−activity relationships for these bioactive molecules. Herein, we describe chemically tuning the electrophilicity of the α-methylene−γ-lactone by replacement with an α-methylene−γ-lactam. Guaianolide analogues having α-methylene−γ-lactams are synthesized using the allenic Pauson−Khand reaction. Substitution of the lactam nitrogen with electronically different groups affords diverse thiol reactivity. Cellular NF-κB inhibition assays for these lactams were benchmarked against parthenolide and a synthetic α-methylene−γ-lactone showing a positive correlation between thiol reactivity and bioactivity. Cytotoxicity assays show good correlation at the outer limits of thiol reactivity but less so for compounds with intermediate reactivity. A La assay to detect reactive molecules by nuclear magnetic resonance and mass spectrometry peptide sequencing assays with the La antigen protein demonstrate that lactam analogues with muted nonspecific thiol reactivities constitute a better electrophile for rational chemical probe and therapeutic molecule design.
Described herein is af unction-oriented synthesis route and biological evaluation of pseudoguaianolide analogues. The 10-step synthetic route developed retains the topological complexity of the natural product, installs functional handles for late-stage diversification, and forges the key bioactive Michael acceptors early in the synthesis. The analogues were found to be low-micromolar Nrf2 activators and micromolar NF-kBi nhibitors and dependent on the local environment of the Michael acceptor moieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.