Although our understanding of psychotic disorders has advanced substantially in the past few decades, very little has changed in the standard of care for these illnesses since the development of atypical anti-psychotics in the 1990s. Here, we integrate new insights into the pathophysiology with the increasing interest in early detection and prevention. First, we explore the role of N-methyl-D-aspartate receptors in a subpopulation of cortical parvalbumin-containing interneurons (PVIs). Postmortem and preclinical data has implicated these neurons in the positive and negative symptoms, as well as the cognitive dysfunction present in schizophrenia. These neurons also appear to be sensitive to inflammation and oxidative stress during the perinatal and peripubertal periods, which may be mediated in large part by aberrant synaptic pruning. After exploring some of the molecular mechanisms through which neuroinflammation and oxidative stress are thought to exert their effects, we highlight the progress that has been made in identifying psychosis prior to onset through the identification of individuals at clinical high risk for psychosis (CHR). By combining our understanding of psychosis pathogenesis with the increasing characterization of endophenotypes that precede frank psychosis, it may be possible to identify patients before they present with psychosis and intervene to reduce the burden of the disease to both patients and families.
Psychotic disorders are heterogeneous and complex, involving many putative causal factors interacting along the course of disease development. Many of the factors implicated in the pathogenesis of psychosis also appear to be involved in disease onset and subsequent neuroprogression. Herein, we highlight the pertinent literature implicating inflammation and oxidative stress in the pathogenesis of psychosis, and the potential contribution of N-methyl-D-aspartate receptors (NMDARs). We also emphasize the role of peripubertal social stress in psychosis, and the ways in which hippocampal dysfunction can mediate dysregulation of the hypothalamic-pituitary-adrenal axis and cortisol release. Finally, we propose a model wherein inflammation and oxidative stress act as a first hit, producing altered parvalbumin interneuron development, NMDAR hypofunction, microglial priming, and sensitivity to a second hit of peripubertal social stress. With a greater understanding of how these factors interact, it may be possible to detect, prevent, and treat psychosis more effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.