Contact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests (with a high false negative rate) due to lack of accessibility to PCR tests. These limitations, combined with SARS-CoV-2’s propensity for asymptomatic transmission, raise the question “how reliable was contact tracing for COVID-19 in the United States”? We answered this question using a Markov model to examine the efficiency with which transmission could be detected based on the design and response rates of contact tracing studies in the United States. Our results suggest that contact tracing protocols in the U.S. are unlikely to have identified more than 1.65% (95% uncertainty interval: 1.62%-1.68%) of transmission events with PCR testing and 0.88% (95% uncertainty interval 0.86%-0.89%) with rapid antigen testing. When considering an optimal scenario, based on compliance rates in East Asia with PCR testing, this increases to 62.7% (95% uncertainty interval: 62.6%-62.8%). These findings highlight the limitations in interpretability for studies of SARS-CoV-2 disease spread based on U.S. contact tracing and underscore the vulnerability of the population to future disease outbreaks, for SARS-CoV-2 and other pathogens.
Contact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests (with a high false negative rate) due to lack of accessibility to PCR tests. These limitations, combined with SARS-CoV-2s propensity for asymptomatic transmission, raise the question how reliable was contact tracing for COVID-19 in the United States? We answered this question using a Markov model to examine the efficiency with which transmission could be detected based on the design and response rates of contact tracing studies in the United States. Our results suggest that contact tracing protocols in the U.S. are unlikely to have identified more than 1.65% (95% uncertainty interval: 1.62%-1.68%) of transmission events with PCR testing and 0.88% (95% uncertainty interval 0.86%-0.89%) with rapid antigen testing. When considering an optimal scenario, based on compliance rates in East Asia with PCR testing, this increases to 62.7% (95% uncertainty interval: 62.6%-62.8%). These findings highlight the limitations in interpretability for studies of SARS-CoV-2 disease spread based on U.S. contact tracing and underscore the vulnerability of the population to future disease outbreaks, for SARS-CoV-2 and other pathogens.
We present a streamlined proof of the foundational result in the theory of exponential random graph models (ERGMs) that the maximum likelihood estimate exists if and only if the target statistic lies in the relative interior of the convex hull of the set of realizable statistics. We also discuss how linear dependence or "approximate linear dependence" of network statistics may lead to degeneracy during model fitting.
The recently emerged SARS-CoV-2 virus has led to a prolonged pandemic characterized by ongoing viral evolution. Vaccines have been an important piece in the strategy to combat the virus but have been insufficient to contain it as the virus continues to evolve to evade immunity developed by vaccination and infection. A consistent argument is that vaccination or prior immunity will lead to less severe infections. In this review, we address the question of whether the virus can evolve to become more virulent, despite prior infection. We describe the intrinsic characteristics of the virus and their relationship to altered virulence. We show that it is likely that viral evolution is subject to evolutionary drift, and it cannot be assumed that the virus will necessarily evolve to be less virulent, or that prior immunity will offer durable protection against severe disease. This has strong implications for public health strategies to confront the ongoing challenges presented by SARS-CoV-2 and implies that there are significant risks to a strategy based on the assumption of waning virulence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.