Even though the skin surface is acidic (about pH 5), most in vitro studies on desquamation have been performed at alkaline pH. We demonstrate that the standard in vitro model system, which achieves squame shedding upon incubation of plantar stratum corneum for 1 day in an alkaline buffer that must include a chelating agent, can be extended to a more realistic model in which the incubation is for 4 days, at varying pHs from 5 to 8, without exogenous chelators. Desmoglein I from stratum corneum was degraded by the squames shed at pH 5 as well as at pH 8. Squame shedding was inhibited to varying extents by the addition of proteinase inhibitors, whose specificity suggested that the crucial enzymatic activity at pH 8 was a chymotrypsin-like serine proteinase, while a similar activity at pH 5 was accompanied by an aspartic proteinase activity of comparable strength. Four degradation peaks were observed when the insulin B chain was reacted with shed squames at pH 5. Two of these peptides were suppressed by the addition of phenylmethylsulphonyl fluoride, the other two by pepstatin A; chymostatin inhibited all four, but E-64 and leupeptin showed no effect. The implied specificity was confirmed by reacting the insulin (without squames) with the standard enzymes human liver cathepsin D and pancreatic chymotrypsin, reproducing the expected degradation products. These results suggest that epidermal desquamation at acidic pH requires two proteolytic activities, one of which is an analogue of chymotrypsin and the other of cathepsin D. Endogenous proteinases corresponding to these activities have been previously identified, namely the stratum corneum chymotryptic enzyme and the mature active form of cathepsin D.
Psoriasis is a T cell-mediated inflammatory disease characterized by hyperproliferation and by aberrant differentiation. We found cathepsin D and zinc-alpha(2)-glycoprotein, two catalytic enzymes associated with apoptosis and desquamation, to be present in the stratum corneum of the normal epidermis but absent from the psoriatic plaque. Psoriasis is characterized by an altered response to interferon-gamma (IFN-gamma), including the induction of apoptosis in normal but not in psoriatic keratinocytes, often with opposite effects on gene expression of suprabasal proteins. We found that IFN-gamma binding and signaling were attenuated in psoriasis: The IFN-gamma receptor, the signal transducer and activator of transcription STAT-1, and the interferon regulatory factor IRF-1 were strongly up-regulated by IFN-gamma in normal keratinocytes, but not in psoriatic ones. IFN-gamma strongly up-regulated the expression of the catalytic enzymes cathepsin D and zinc-alpha(2)-glycoprotein in normal keratinocytes but down-regulated them in psoriatic ones; the reverse was true of the apoptotic suppressor bcl-2. We believe that the aberrant response to IFN-gamma plays a central role in the pathophysiology of psoriasis, particularly the disruption of apoptosis and desquamation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.