We demonstrate 5 dB net gain in an erbium-doped tellurium-oxide-coated silicon nitride waveguide. The amplifier design leverages the high refractive index and high gain in erbium-doped tellurite glass as well as the ultra-low losses and mature, reliable, and low-cost fabrication methods of silicon nitride waveguide technology. We show that the waveguide platform demonstrates low background propagation losses of 0.25 dB/cm based on a ring resonator device with a
Q
factor of
1.3
×
10
6
at 1640 nm. We measure 5 dB peak net gain at 1558 nm and
>
3
dB
of net gain across the C band in a 6.7 cm long waveguide for 35 mW of launched 1470 nm pump power. Gain per unit length of 1.7 and 1.4 dB/cm is measured in a 2.2 cm long waveguide for 970 and 1470 nm pump wavelengths, respectively. Amplifier simulations predict that
>
10
dB
gain can be achieved across the C band simply by optimizing waveguide length and fiber-chip coupling. These results demonstrate a promising approach for the monolithic integration of compact erbium-doped waveguide amplifiers on silicon nitride chips and within silicon-based photonic integrated circuits.
We report on the design and performance of high-Q integrated optical micro-trench cavities on silicon. The microcavities are co-integrated with silicon nitride bus waveguides and fabricated using wafer-scale silicon-photonics-compatible processing steps. The amorphous aluminum oxide resonator material is deposited via sputtering in a single straightforward post-processing step. We examine the theoretical and experimental optical properties of the aluminum oxide micro-trench cavities for different bend radii, film thicknesses and near-infrared wavelengths and demonstrate experimental Q factors of > 10. We propose that this high-Q micro-trench cavity design can be applied to incorporate a wide variety of novel microcavity materials, including rare-earth-doped films for microlasers, into wafer-scale silicon photonics platforms.
In this work, we present on optical gain and lasing in an ultra-compact thulium-silicon hybrid microdisk resonator emits around 1.9 µm with an internal slope efficiency of 60% and > 1 mW on-chip output power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.