Formation of the Panama Isthmus, that had global oceanographic and biotic effects in the Neogene, is generally associated with tectonic uplift during collision of the Panama volcanic arc with South America. However, new field, geochemical and geochronological data from the Culebra Cut of the Panama Canal suggest that volcanism also contributed to the Isthmus emergence in the Early Miocene. This volcanism is recorded in a newly-recognised Central Panama volcanic field that includes several phases of development. Early activity of this field along the Panama Canal was associated with proximal effusive to explosive felsic products during formation of subaerial stratovolcanoes and possible domes ca. 21 Ma. This was followed by a period of marine transgression ca. 21–18 Ma, with more distal volcanism documented by tuffs that deposited in marine to terrestrial environments. Finally, proximal mafic volcanism formed tephra cones in a monogenetic field ca. 18(-?) Ma. This was associated with phreatomagmatic processes in a coastal environment, with remarkable kilometre-wide subvolcanic peperitic intrusions. We propose based on these observations that formation of the Central Panama volcanic field was critical in shaping regional topography, and that this could have actively contributed to obstruction and closure of an interoceanic strait in Central Panama.
The Panama Canal area is a significant part of the Panama Isthmus, where prominent volcanic fronts of eastern Central America are interrupted by a topographic low of unclear tectonic and magmatic origin. Determining why no prominent volcanic system occurs along the Canal is essential to understand the formation of the Isthmus in an area believed to have hosted one of the last inter-American straits between the Atlantic and Pacific Oceans. We provide here new geochronological and geochemical constraints from volcanic units of the Panama Canal that belong to the recently-identified Central Panama Volcanic Field. Whole rock and mineralogical geochemical compositions document a secular magmatic change from ca. 25 to 16Ma, with a progressive change from calcalkaline to tholeiitic and possibly alkaline/transitional geochemical affinities. The age of the youngest volcanic unit of the Canal is similar to that of the youngest documented arc volcanism in eastern Panama ca. 18 Ma. We propose based on these observations and consistency with regional geological constraints that the Canal volcanism represents a unique example of magmatic cessation along a volcanic arc. This cessation occurred shortly after the breakup of the Farallon plate ca. 23 Ma, suggesting a causal link between volcanic shutdown and transition from orthogonal to oblique subduction along Central and Eastern Panama. We suggest that this tectonic event suppressed hydrous melting in the subduction zone and led to regional magmatic waning in Central and Eastern Panama ca. 16Ma. The pre-existence of a transisthmian fault system in Central Panama probably facilitated extraction of the last supra-subduction melts during volcanic shutdown. Our results suggest that the end of volcanism, combined with transisthmian faulting, impeded the development of high topography in the Panama Canal area. Without this unusual tectono-magmatic evolution, the occurrence of a late inter-oceanic strait in Central Panama and the construction of the Panama Canal would not have been possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.