Laparoscopic Ultrasound (LUS) is recommended as a standard-of-care when performing laparoscopic liver resections as it images sub-surface structures such as tumours and major vessels. Given that LUS probes are difficult to handle and some tumours are iso-echoic, registration of LUS images to a pre-operative CT has been proposed as an image-guidance method. This registration problem is particularly challenging due to the small field of view of LUS, and usually depends on both a manual initialisation and tracking to compose a volume, hindering clinical translation. In this paper, we extend a proposed registration approach using Content-Based Image Retrieval (CBIR), removing the requirement for tracking or manual initialisation. Pre-operatively, a set of possible LUS planes is simulated from CT and a descriptor generated for each image. Then, a Bayesian framework is employed to estimate the most likely sequence of CT simulations that matches a series of LUS images. We extend our CBIR formulation to use multiple labelled objects and constrain the registration by separating liver vessels into portal vein and hepatic vein branches. The value of this new labeled approach is demonstrated in retrospective data from 5 patients. Results show that, by including a series of 5 untracked images in time, a single LUS image can be registered with accuracies ranging from 5.7 to 16.4 mm with a success rate of 78%. Initialisation of the LUS to CT registration with the proposed framework could potentially enable the clinical translation of these image fusion techniques.
Neuroimaging to neuropathology correlation (NTNC) promises to enable the transfer of microscopic signatures of pathology to in vivo imaging with MRI, ultimately enhancing clinical care. NTNC traditionally requires a volumetric MRI scan, acquired either ex vivo or a short time prior to death. Unfortunately, ex vivo MRI is difficult and costly, and recent premortem scans of sufficient quality are seldom available. To bridge this gap, we present methodology to 3D reconstruct and segment full brain image volumes from brain dissection photographs, which are routinely acquired at many brain banks and neuropathology departments. The 3D reconstruction is achieved via a joint registration framework, which uses a reference volume other than MRI. This volume may represent either the sample at hand (e.g., a surface 3D scan) or the general population (a probabilistic atlas). In addition, we present a Bayesian method to segment the 3D reconstructed photographic volumes into 36 neuroanatomical structures, which is robust to nonuniform brightness within and across photographs. We evaluate our methods on a dataset with 24 brains, using Dice scores and volume correlations. The results show that dissection photography is a valid replacement for ex vivo MRI in many volumetric analyses, opening an avenue for MRI-free NTNC, including retrospective data. The code is available at https://github.com/htregidgo/DissectionPhotoVolumes.
Laparoscopic Ultrasound (LUS) can enhance the safety of laparoscopic liver resection by providing information on the location of major blood vessels and tumours. Since many tumours are not visible in ultrasound, registration to a pre-operative CT has been proposed as a guidance method. In addition to being multi-modal, this registration problem is greatly affected by the differences in field of view between CT and LUS, and thus requires an accurate initialisation. We propose a novel method of registering smaller field of view slices to a larger volume globally using a Content-based retrieval framework. This problem is under-constrained for a single slice registration, resulting in non-unique solutions. Therefore, we introduce kinematic priors in a Bayesian framework in order to jointly register groups of ultrasound images. Our method then produces an estimate of the most likely sequence of CT images to represent the ultrasound acquisition and does not require tracking information nor an accurate initialisation. We demonstrate the feasibility of this approach in multiple LUS acquisitions taken from three sets of clinical data.
Background Transarterial chemoembolization (TACE) is the current standard of care for patients with intermediate-stage hepatocellular carcinoma (HCC) and is also a treatment option for patients with liver metastases from colorectal cancer. However, TACE is not a curative treatment, and tumor progression occurs in more than half of the patients treated. Despite advances and technical refinements of TACE, including the introduction of drug-eluting beads-TACE, the clinical efficacy of TACE has not been optimized, and improved arterial therapies are required. Objective The primary objectives of the VEROnA study are to evaluate the safety and tolerability of vandetanib-eluting radiopaque embolic beads (BTG-002814) in patients with resectable liver malignancies and to determine concentrations of vandetanib and the N-desmethyl metabolite in plasma and resected liver following treatment with BTG-002814. Methods The VEROnA study is a first-in-human, open-label, single-arm, phase 0, window-of-opportunity study of BTG-002814 (containing 100 mg vandetanib) delivered transarterially, 7 to 21 days before surgery in patients with resectable liver malignancies. Eligible patients have a diagnosis of colorectal liver metastases, or HCC (Childs Pugh A), diagnosed histologically or radiologically, and are candidates for liver surgery. All patients are followed up for 28 days following surgery. Secondary objectives of this study are to evaluate the anatomical distribution of BTG-002814 on noncontrast-enhanced imaging, to evaluate histopathological features in the surgical specimen, and to assess changes in blood flow on dynamic contrast-enhanced magnetic resonance imaging following treatment with BTG-002814. Exploratory objectives of this study are to study blood biomarkers with the potential to identify patients likely to respond to treatment and to correlate the distribution of BTG-002814 on imaging with pathology by 3-dimensional modeling. Results Enrollment for the study was completed in February 2019. Results of a planned interim analysis were reviewed by a safety committee after the first 3 patients completed follow-up. The recommendation of the committee was to continue the study without any changes to the dose or trial design, as there were no significant unexpected toxicities related to BTG-002814. Conclusions The VEROnA study is studying the feasibility of administering BTG-002814 to optimize the use of this novel technology as liver-directed therapy for patients with primary and secondary liver cancer. Trial Registration ClinicalTrial.gov NCT03291379; https://clinicaltrials.gov/ct2/show/NCT03291379 International Registered Report Identifier (IRRID) DERR1-10.2196/13696
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.