Many cancer cells have an unusual ability to grow in hypoxia, but the origins of this metabolic phenotype remain unclear. We compared the metabolic phenotypes of three common prostate cancer cell models (LNCaP, DU145, PC3), assessing energy metabolism, metabolic gene expression, and the response to various culture contexts (in vitro and xenografts). LNCaP cells had a more oxidative phenotype than PC3 and DU145 cells based upon respiration, lactate production, [ATP], metabolic gene expression, and sensitivity of these parameters to hypoxia. PC3 and DU145 cells possessed similar Complex II and mtDNA levels, but lower Complex III and IV activities, and were unresponsive to dinitrophenol or dichloroacetate, suggesting that their glycolytic phenotype is due to mitochondrial dysfunction rather than regulation. High passage under normoxia converted LNCaP from oxidative to glycolytic cells (based on respiration and lactate production), and altered metabolic gene expression. Though LNCaP-derived cells differed from the parental line in mitochondrial enzyme activities, none differed in mitochondrial content (assessed as cardiolipin levels). When LNCaP-derived cells were grown as xenografts in immunodeficient mice, there were elements of a hypoxic response (e.g., elevated VEGF mRNA) but line-specific changes in expression of select glycolytic, mitochondrial and fatty acid metabolic genes. Low oxygen in vitro did not influence the mRNA levels of SREBP axis, nor did it significantly alter triglyceride production in any of the cell lines suggesting that the pathway of de novo fatty acid synthesis is not directly upregulated by hypoxic conditions. Collectively, these studies demonstrate important differences in the metabolism of these prostate cancer models. Such metabolic differences would have important ramifications for therapeutic strategies involving metabolic targets.
Members of the mammalian Vestigial-like (VGLL) family of transcriptional cofactors activate genes in response to a wide variety of environmental cues. Recently, VGLL proteins have been proposed to regulate key signaling networks involved in cancer development and progression. However, the biological and clinical significance of VGLL dysregulation in human breast cancer pathogenesis remains unknown. Here, we report that diminished VGLL4 expression, but not VGLL1-3, correlated with both shorter relapse-free survival and shorter disease-specific survival of cancer patients with different molecular subtypes of breast cancer. Additionally, we further demonstrate that overexpression of VGLL4 reduces breast cancer cell proliferation, migration, intravasation/extravasation potential, favors cell death, and suppresses tumor growth in vivo. Mechanistically, VGLL4 negatively regulates the TEAD1-YAP1 transcriptional complex and exerts its growth inhibitory control through its evolutionary conserved TDU2 domain at its C-terminus. The results suggest that VGLL4 is a candidate tumor suppressor gene which acts by selectively antagonizing YAP-dependent tumor growth. VGLL4 may be a promising therapeutic target in breast cancer.
Doxorubicin executes apoptosis, a process known to produce leakage of cytochrome c and opening of the mitochondrial permeability transition pores. To define the loss of mitochondrial function by apoptosis, we monitored cellular respiration during continuous exposure to doxorubicin. A phosphorescence analyzer capable of stable measurements over at least 5 h was used to measure [O(2)]. In solutions containing glucose and cells, [O(2)] declined linearly with time, showing that the kinetics of oxygen consumption was zero order. Complete inhibition of oxygen consumption by cyanide indicated that oxidations occurred in the respiratory chain. A decline in the rate of respiration was evident in Jurkat and HL-60 cells exposed to doxorubicin. The decline was abrupt, occurring after about 2 h of incubation. The inhibition was concentration-dependent and was completely blocked by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone. Respiration in resistant HL-60/MX2 cells, characterized by an altered topoisomerase II activity, was not inhibited by doxorubicin. A decline in cellular ATP was measured in Jurkat cells after 2-4 h of incubation with 20 microM doxorubicin, paralleling the decline in respiration rate. Thus, cells incubated with doxorubicin exhibit caspase-mediated inhibition of oxidative phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.