<p>The crystal structure determination of the title compound, C15H14N2O, confirms the cis relationship between the phenyl groups at the 4- and 5-positions on the imidazolidine ring. The dihedral angle between the two phenyl rings is 48.14 (6). In the crystal structure, intermolecular N—HO hydrogen bonds link molecules into centrosymmetric dimers. These dimers are, in turn, linked into a two-dimensional network via weak N—H(arene) interactions and – stacking interactions with centroid–centroid distances of 3.6937 (11) A˚ . </p>
The crystal structure determination of the title compound, C15H14N2O, confirms the cis relationship between the phenyl groups at the 4- and 5-positions on the imidazolidine ring. The dihedral angle between the two phenyl rings is 48.14 (6)°. In the crystal structure, intermolecular N—H⋯O hydrogen bonds link molecules into centrosymmetric dimers. These dimers are, in turn, linked into a two-dimensional network via weak N—H⋯π(arene) interactions and π–π stacking interactions with centroid–centroid distances of 3.6937 (11) Å.
<p>The crystal structure determination of the title compound, C15H14N2O, confirms the cis relationship between the phenyl groups at the 4- and 5-positions on the imidazolidine ring. The dihedral angle between the two phenyl rings is 48.14 (6). In the crystal structure, intermolecular N—HO hydrogen bonds link molecules into centrosymmetric dimers. These dimers are, in turn, linked into a two-dimensional network via weak N—H(arene) interactions and – stacking interactions with centroid–centroid distances of 3.6937 (11) A˚ . </p>
This study explores the quenching of the dianionic fluorescent whitening agent, NFW, by various substances, including methyl viologen (MV), in water and in the presence of Beta-cyclodextrin (β-CD). Results of a fluorescence spectroscopic examination of the β-CD-NFW system are presented. It was found that NFW forms a 1:1 inclusion complex with β-CD with an association constant of 2540 ± 380 M<sup>-1</sup>. The included NFW fluorescent state is protected by the β-CD cavity from a range of water-based quenchers (neutral, anionic and cationic). Quenching proceeds near the diffusion-controlled limit in water for the quenchers tested with the exception of the dicationic MV. MV is an extremely efficient quencher of NFW fluorescence with a nominal K<sub>SV</sub> ~ 5.0x10<sup>3</sup> M<sup>-1</sup> in water alone, corresponding to a nominal k<sub>q</sub> of ~ 4x10<sup>12</sup> M<sup>-1</sup>s<sup>-1</sup>, which exceeds the diffusion-controlled limit in this solvent. The quenching efficiency of MV is strongly suppressed in the presence of 10 mM β-CD (K<sub>SV</sub> = 105 ± 12 M<sup>-1</sup>) and in the presence of NaCl (K<sub>SV</sub> = 106 ± 9 M<sup>-1</sup> at 0.5 M salt). In the absence of CD or salt, there is a strong contribution from static quenching in the MV system; the presence of these additives suppresses the static quenching. Various results suggest the static quenching is due to formation of a ground-state complex between the dianion NFW and the dication MV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.