Streptozotocin (STZ)-induced diabetes mellitus (DM) offers a very cost effective and expeditious technique that can be used in most strains of rodents, opening the field of DM research to an array of genotypic and phenotypic options that would otherwise be inaccessible. Despite widespread use of STZ in small animal models, the data available concerning drug preparation, dosing and administration, time to onset and severity of DM, and any resulting moribundity and mortality are often limited and inconsistent. Because of this, investigators inexperienced with STZ-induced diabetes may find it difficult to precisely design new studies with this potentially toxic chemical and account for the severity of DM it is capable of inducing. Until a better option becomes available, attempts need to be made to address shortcomings with current STZ-induced DM models. In this paper we review the literature and provide data from our pancreatic islet transplantation experiments using single high dose STZ-induced DM in NCr Athymic Nude mice with hopes of providing clarification for study design, suggesting refinements to the process, and developing a more humane process of chemical diabetes induction.
Expression of p16(Ink4a) and p19(Arf) increases with age in both rodent and human tissues. However, whether these tumour suppressors are effectors of ageing remains unclear, mainly because knockout mice lacking p16(Ink4a) or p19(Arf) die early of tumours. Here, we show that skeletal muscle and fat, two tissues that develop early ageing-associated phenotypes in response to BubR1 insufficiency, have high levels of p16(Ink4a) and p19(Arf). Inactivation of p16(Ink4a) in BubR1-insufficient mice attenuates both cellular senescence and premature ageing in these tissues. Conversely, p19(Arf) inactivation exacerbates senescence and ageing in BubR1 mutant mice. Thus, we identify BubR1 insufficiency as a trigger for activation of the Cdkn2a locus in certain mouse tissues, and demonstrate that p16(Ink4a) is an effector and p19(Arf) an attenuator of senescence and ageing in these tissues.
Human amylin, a major constituent of pancreatic amyloid deposits, may be a pathogenetic factor for noninsulin-dependent diabetes mellitus (NIDDM). We demonstrated that the human amylin S20G gene mutation (S20G) was associated with a history of early onset, more severe type of NIDDM, linking the amylin gene to this disease. Also, we demonstrated that expression of human wild-type (WT) amylin in COS-1 cells leads to intracellular amyloidogenesis and induction of apoptosis, suggesting a possible mechanism for disease induction. Therefore we compared the abilities of S20G and WT amylin to induce apoptosis in transfected COS-1 cells and form amyloid in vitro. We transfected the rat (RAT), mutated human (MUT), WT, and S20G amylin genes into COS-1 cells and measured apoptosis using fluorescent-activated cell sorting analysis at 48, 72, and 96 hours. At 96 hours apoptosis increased significantly (P < 0.01) in cells transfected with WT and S20G over RAT or MUT (WT, 19%; S20G, 25%; RAT, 13%; and MUT, 12%) and the difference between WT and S20G was significant (P < 0.05). Synthetic WT and S20G monomeric peptides were used to generate amyloid fibrils in vitro as measured by the thioflavin T binding assay. The S20G amylin formed approximately twofold more amyloid at a rate approximately threefold higher than WT. Electron micrography indicated that the in vitro amyloid generated by WT and S20G amylins were morphologically indistinguishable. The results suggest that increased cytotoxicity by S20G is because of increased amyloidogenicity, which may be a causative factor in the early development of NIDDM, possibly through loss of ss cell mass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.